Tui biết làm nè nhưng một lúc nữa nhé
Đặt \(A=1+2+2^2+2^3+...+2^{11}\)
\(A=\left(1+2+2^2+2^3+2^4+2^5\right)+2^6\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(A=63+2^6.63\)
\(A=63\left(1+2^6\right)\)
Vì \(63⋮9\) nên \(63\left(1+2^6\right)⋮9\)
Vậy \(A⋮9\)
Đặt A= 1+2+2\(^{^{^{ }}2}\)+2\(^3\)+...+2\(^{11}\)
=> A=(1+2+2\(^{^{^{ }}2}\)+2\(^3\)+2\(^4\)+2\(^5\))+2\(^6\)(1+2+2\(^{^{^{ }}2}\)+2\(^3\)+2\(^4\)+2\(^5\))
=> A=63+2\(^6\).63
=> A=63.(1+2\(^6\))
Vì 63\(⋮\)9=>A chia hết cho 9