a) Gọi \(d\) là \(UCLN\left(n+1;2n+3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\left(n+1;2n+3\right)=1\rightarrowđpcm\)
b) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-15n-9⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
Vậy \(\left(3n+2;5n+3\right)=1\rightarrowđpcm\)
Goi d la UCLN(n+1;2n+3)
=>{n=1:'d
{2n+3:'d
=>{2n+2:'d
{2n+3:'d
=>2n+3-2n-2:'d
1:d(=)d=1
Vay (n+1;2n+3)=1=>dpcm
b,Goi d la UCLN(3n+2;5n+3)
=>{3n+2:d
{5n+3:d
=>{15n+10:d
{15n+9:d
=>15n+10-15n-9:d
=1:d(=)d=1
Vay(3n+2;5n+3)=1=>dpcm