tớ khác nhé :
Cho n = 2k thì n . ( n + 5 ) = 2k . ( 2k + 5 ) chia hết cho 2
= ( 2k + 1 ) . ( 2k + 5 ) chia hết cho 2
= 2 . ( 2k + 1 ) . ( k + 5 ) chia hết cho 2
Vì : 2 nhân với thừa số nào cũng chia hết cho chính nó
Vậy : n . ( n + 5 ) chia hết cho 2
Với n=2k thì 2k﴾2k+5﴿ chia hết cho 2
Với n=2k+1 thì ﴾2k+1﴿﴾2k+1+5﴿=﴾2k+1﴿2﴾k+3﴿ chia hết cho 2
Nếu n chia hết cho 2 => n = 2k => 2k(2k + 5) chia hết cho 2 (vì có 2k là thừa số chung)
Nếu n không chia hết cho 2 => n = 2k + 1 => (2k + 1) (2k + 1 + 5) = 2(2k + 1)(k+3) = 2(2k + k + 1 + 3) = 2k(k + 4) chia hết cho 2 (vì có TSC là 2k)
Với n là số chẵn => n chia hết cho 2 => n(n+5) chia hết cho 2
Với n là số lẻ => n+5 chia hết cho 2 => n(n+5) chia hết cho 2
Vậy n(n+5) luôn chia hết cho 2 với mọi số tự nhiên n