Đặt A=\(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(\Rightarrow A=2.3+2^3.3+...+2^{59}.3⋮3\)
⇒A=\(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)⋮3(đpcm)
Đặt A=\(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(\Rightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(\Rightarrow A=2.3+2^3.3+...+2^{59}.3⋮3\)
⇒A=\(2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)⋮3(đpcm)
Chứng tỏ rằng A = 2 + 22 + 23 + …+ 2100 chia hết cho 6.
Bài 1 :
Tìm chữ số tận cùng của số A = 3n+2 - 2n+2 + 3n - 2n
Bài 2:
Chứng minh rằng : nếu (d+2c+4b) chia hết cho 8 thì abcd chia hết cho 8
Bài 3 : Cho C= 2+22 + 23 +......+ 299 + 2100
a) Chứng minh rằng C chia hết cho 31
b) Tìm x để 22x - 2 = C
1 Chứng tỏ rằng
a ) 10 ^21 +20 chia hết cho 6
b) 10^2015 +8 chia hết cho 18
2 Chứng tỏ rằng vs mọi số tự nhiên n thì ( n +n ) . ( n + 12 ) chia hết cho 2
3 Chứng tỏ rằng tính các ba số chẵn liên tiếp chia hết cho 48
Cho B=23!+19!-15!
Chứng minh rằng B chia hết cho 11
chia hết cho 110
chia hết cho 5
bài 1 chứng minh
A = 1/21+1/22+1/23+...+1/34+1/35>1/2
Bài 1. chứng tỏ rằng 175 + 244 - 1321 chia hết cho 10 .
Bài 2 . chứng minh rằng với mọi số tự nhiên n:
a. 74n chi hết cho 5
b. 34n+1 + 2 chia hết cho 5
c. 24+n + 3 chia hết cho 5
d. 24+n + 1 chia hết cho 5
e . 92n+1 + 1 chia hết cho 10
Bài 3 . tìm các số tự nhiên n để n10 + 1 chia hết cho 10
Chứng tỏ rằng tổng A = 1+3+32+33+...+311 chia hết cho 13
Chứng tỏ rằng 10 mũ 99 + 2 mũ 3 chia hết cho 9
Bài 3:Tính
b; 21+22+23+24 -11 -12 -13 -14
Chứng tỏ rằng nếu a là một số lẻ không chia hết cho 3 thì a^2-1 chia hết cho 6