Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thảo Hân

Chứng minh \(\sqrt{5}\) là số vô tỉ

Lê Nguyên Hạo
21 tháng 8 2016 lúc 9:57

Giả sử căn 5 là số vô tỉ biểu thị bởi phân số tối giản \(\frac{p}{q}\)
=> \(\frac{p}{q}=\sqrt{5}\Rightarrow\frac{p^2}{q^2}=5\Rightarrow p^2=5q^2\)
Như vậy \(p^2\) chia hết cho 5 => p chia hết cho 5 => p= 5k 
Do đó \(25k^2=5q^2\Rightarrow q^2=5k^2\Rightarrow q^2⋮5\Rightarrow q⋮5\) chia hết cho 5 nên q chia hết cho 5 
Vì p;q chia hết cho 5 nên p/q không tối giản (mâu thuẫn với giả thiết) 
Vậy căn 5 là số vô tỉ

Isolde Moria
21 tháng 8 2016 lúc 9:57

Ta giải bằng phương phap phản chứng .

Giả sử \(\sqrt{5}\) là số hữa tỉ

\(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a;b\in Z;\left(a;b\right)=1\right)\)

\(\Rightarrow5=\frac{a^2}{b^2}\)

\(\Rightarrow\frac{a^2}{5}=b^2\)

Mà b là số nguyên

\(\Rightarrow a^2⋮5\)

Mặt khác 5 là số nguyên tố

\(\Rightarrow a^2⋮25\)

Ta lại có

\(a^2=5b^2\)

\(\Rightarrow5b^2⋮25\)

\(\Rightarrow b^2⋮5\)

Ta có

a^2 chia hết cho 5 ; b^2 chia hết cho 5

=> \(ƯC_{\left(a;b\right)}=5\)

Trái với giả thiết

=> giả sử sai

Vậy căn 5 là số vô tỉ

Võ Đông Anh Tuấn
21 tháng 8 2016 lúc 9:52

giả sử √5 là số hữu tỉ 
=> √5 = a/b (a,b ∈ Z ; b ≠ 0) 
không mất tính tổng quát giả sử (a;b) = 1 
=> 5 = a²/b² 
<=> a² = 5b² 
=> a² ⋮ 5 
5 nguyên tố 
=> a ⋮ 5 
=> a² ⋮ 25 
=> 5b² ⋮ 25 
=> b² ⋮ 5 
=> b ⋮ 5 
=> (a;b) ≠ 1 (trái với giả sử) 
=> giả sử sai 
=> √5 là số vô tỉ


Các câu hỏi tương tự
Lê Dung
Xem chi tiết
Nguyễn Thảo Hân
Xem chi tiết
Phan Hoàng Uyên
Xem chi tiết
Nguyễn Hải Băng
Xem chi tiết
Diệp Scotl
Xem chi tiết
Nguyễn Hải Băng
Xem chi tiết
Nguyễn Ngọc Mai
Xem chi tiết
Quỳnh Mai Become
Xem chi tiết
Nguyễn Đức Tài
Xem chi tiết