Bài 1: Phân thức đại số.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
LA LA LAND

chứng minh rằng: (x-y)/(1+xy) + (y-z)/(1+yz) +(z-x)/(1+zx) = (x-y)(y-z)(z-x)/(1+xy)(1+yz)(1+zx)

LA LA LAND
29 tháng 12 2018 lúc 16:07

ai giúp mình với

LA LA LAND
29 tháng 12 2018 lúc 16:10

...

Nguyễn Minh Đạt
13 tháng 5 2024 lúc 22:39

Ta có:
         \(\dfrac{x-y}{1+xy}\)+\(\dfrac{y-z}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) = \(\dfrac{x-y}{1+xy}\)+\(\dfrac{-\left(x-y\right)-\left(z-x\right)}{1+yz}\)+\(\dfrac{z-x}{1+xz}\)

         =\(\dfrac{x-y}{1+xy}\)\(-\dfrac{x-y}{1+yz}\) \(-\dfrac{z-x}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) 

         = \(\left(x-y\right)\)\(\left(\dfrac{\left(1+yz\right)-\left(1+xy\right)}{\left(1+yz\right)\left(1+xy\right)}\right)\)+(\(z-x\))\(\left(\dfrac{\left(1+yz\right)-\left(1+zx\right)}{\left(1+yz\right)\left(1+zx\right)}\right)\)

         =\(\left(x-y\right)\)\(\dfrac{y\left(z-x\right)}{\left(1+yz\right)\left(1+xy\right)}\)+(\(z-x\))\(\dfrac{-z\left(x-y\right)}{\left(1+yz\right)\left(1+zx\right)}\)

         =\(\left(\dfrac{\left(x-y\right)\left(z-x\right)}{1+yz}\right)\)\(\left(\dfrac{y\left(1+xz\right)-z\left(1+xy\right)}{\left(1+xz\right)\left(1+xy\right)}\right)\)

       =đpcm


Các câu hỏi tương tự
jgfhjudfhuvfghdf
Xem chi tiết
Trần Trung Hiếu
Xem chi tiết
Nguyen Ha Linh
Xem chi tiết
Hạ Mạt
Xem chi tiết
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Annn
Xem chi tiết
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Chi Nguyễn
Xem chi tiết