\(\dfrac{1}{1\cdot6}+\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)\(=\dfrac{1}{5}\cdot\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5\left(n+1\right)}{5n+6}=\dfrac{n+1}{5n+6}=VP\)
Ta có: \(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}\)
=\(\dfrac{1}{5}.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
=\(\dfrac{1}{5}.\left(1-\dfrac{1}{5n+6}\right)\)
= \(\dfrac{1}{5}.\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)
=\(\dfrac{1}{5}.\dfrac{5n+5}{5n+6}\)
=\(\dfrac{1}{5}.\dfrac{5.\left(n+1\right)}{5n+6}\)
=\(\dfrac{n+1}{5n+6}\left(ĐPCM\right)\)