Cho P là số nguyên tố lớn hơn 5. Chứng minh: \(P^{20}-1\) chia hết cho 100
Cho p là số nguyên tố lớn hơn 5. Chứng minh: \(p^{20}-1\) chia hết cho 100
Cho P là số nguyên tố lớn hơn 5. Chứng minh: \(P^{20}-1\) chia hết cho 100
Cho p là số nguyên tố lẻ và a,b,c,d là các số nguyên dương nhỏ hơn p đồng thời a2+b2 chia hết cho p và c2+d2 chia hết cho p.C/m: Trong 2 số ac+bd và ad+bc có một và chỉ một số chia hết cho p
Cho n là số nguyên dương. Chứng minh rằng:
\(A=2^{3n-1}+2^{3n+1}+1 \) chia hết cho 7
cho a,b là số nguyên dương lớn hơn 1. giả sử a^1945 +b^1945 và a^1954 +b^1954 đều chia hết cho 2001. cmr a,b đều chia hết cho 2001
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho a,b,c là các số nguyên thỏa mãn ab+bc+ca+1 chia hết cho 5. Chứng minh rằng abc(a + b + c + abc) chia hết cho 5
Cho p là số nguyên tố lớn hơn 5. Chứng minh rằng: \(A=p^{8n}+23p^{4n}+16\) chia hết cho 5.