Bài 7: Phép nhân các phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vịtt Tên Hiền

chứng minh rằng a2+b2+c2\(\ge\)ab+ac+bc với mọi số a,b,c

Hoang Hung Quan
2 tháng 4 2017 lúc 10:32

Lại copy!!!

Giải:

Áp dụng BĐT Bunhiacopski

Xét cặp số \(\left(1,1,1\right)\)\(\left(a,b,c\right)\) ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

qwerty
2 tháng 4 2017 lúc 8:27


Chúng ta có thể dễ dàng bất đức thức này bằng vài bước suy luận cơ bản như sau:

Chứng minh bất đẳng thức: a2 + b2 + c2 ≥ ab + bc + ca

Điều này luôn đúng nên ta có điều phải chứng minh. Đẳng thức xảy ra khi a = b = c.

F.C
6 tháng 4 2017 lúc 13:39

Ta có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\)

Cộng cả hai vế của bất phương trình ta được \(a^2+b^2\ge2ab\) (1)

Tương tự ta có:

F.C
6 tháng 4 2017 lúc 13:45

Ta có \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2-2ab\ge0\)

Cộng cả hai vế của bất phương trình với 2ab ta được

\(a^2+b^2\ge2ab\) (1)

Tương tự ta có

\(b^2+c^2\ge2bc\) (2)

\(a^2+c^2\ge2ac\) (3)

Cộng (1), (2) và (3) vế theo vế ta được

\(a^2+b^2+b^2+c^2+a^2+c^2\ge2ab+2bc+2ac\)

\(\Rightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)

Chia cả hai vế của bất phương trình cho 2 ta được

\(a^2+b^2+c^2\ge ab+ac+bc\)


Các câu hỏi tương tự
Hoai Nhan Tran
Xem chi tiết
Bùi Thị Ngọc Anh
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
HÀ VŨ NGỌC HOA
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Chu Thị Lan
Xem chi tiết
Đặng Gia Ân
Xem chi tiết
Đặng Gia Ân
Xem chi tiết