Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kirigaya Kazuto

Chứng minh rằng :

a) \(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{100!}< 1\)

b) \(\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+...+\dfrac{9}{1000!}< \dfrac{1}{9!}\)

Nguyễn Thanh Hằng
23 tháng 4 2017 lúc 21:59

a) Đặt :

\(A=\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+.................+\dfrac{1}{100!}\)

Ta thấy :

\(\dfrac{1}{2!}=\dfrac{1}{1.2}\)

\(\dfrac{1}{3!}=\dfrac{1}{1.2.3}\)

\(\dfrac{1}{4!}=\dfrac{1}{1.2.3.4}< \dfrac{1}{3.4}\)

.....................................

\(\dfrac{1}{100!}=\dfrac{1}{1.2.3..........100}< \dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\rightarrowđpcm\)

b) Đặt :

\(B=\dfrac{9}{10!}+\dfrac{9}{11!}+\dfrac{9}{12!}+.............+\dfrac{9}{1000!}\)

Ta thấy :

\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)

\(\dfrac{9}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)

...................................................

\(\dfrac{9}{1000!}< \dfrac{1000-1}{1000!}=\dfrac{1}{999!}-\dfrac{1}{1000!}\)

\(\Rightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+............+\dfrac{1}{999!}-\dfrac{1}{1000!}\)

\(B< \dfrac{1}{9!}-\dfrac{1}{1000!}\)

\(\Rightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)

~ Chúc bn học tốt ~


Các câu hỏi tương tự
Đặng Hoài An
Xem chi tiết
nguyễn phương anh
Xem chi tiết
Ngân Nguyễn
Xem chi tiết
dangthuylinh
Xem chi tiết
Đỗ Manh Tiến
Xem chi tiết
Nguyễn Tuyết Anh
Xem chi tiết
Học đi
Xem chi tiết
Đặng Hoài An
Xem chi tiết
Huỳnh Huyền Linh
Xem chi tiết