\(9^{2n}+1994^{93}\)
Xét:
\(2n⋮2\)
Nên ta xét những số mũ chia hết cho 2
\(9^{1.2}=9^2=\overline{...1}\)
\(9^{2.2}=9^4=\overline{...1}\)
\(9^{3.2}=9^6=\overline{...1}\)
\(\Rightarrow9^{2n}=\overline{...1}\)
Xét+ Sửa đề:
\(1999^3=\overline{...9}\)
\(1999^6=\overline{....9}\)
\(1999^9=\overline{...9}\)
Các số mũ trên đều chia hết cho 3
\(93⋮3\Rightarrow1999^{93}=\overline{...9}\)
\(\Rightarrow9^{2n}+1994^{93}=\overline{....1}+\overline{....9}=\overline{....0}⋮5\rightarrowđpcm\)