- x2 + 2x - 2
= - ( x2 - 2x + 1) - 1
= - ( x - 1)2 - 1
Do : - ( x - 1)2 nhỏ hơn hoặc bằng 0 với mọ x thuộc R
=> - ( x - 1)2 - 1 nhỏ hơn hoặc bằng -1 với ọõi x thuộc R
Dấu bằng xảy ra khi : x - 1 = 0 => x = 1
Vậy,....
- x2 + 2x - 2
= - ( x2 - 2x + 1) - 1
= - ( x - 1)2 - 1
Do : - ( x - 1)2 nhỏ hơn hoặc bằng 0 với mọ x thuộc R
=> - ( x - 1)2 - 1 nhỏ hơn hoặc bằng -1 với ọõi x thuộc R
Dấu bằng xảy ra khi : x - 1 = 0 => x = 1
Vậy,....
cho biểu thức P=\(P=\dfrac{x^3-2x^2-9x+18}{x^2+x-6}\)
a,Tìm điều kiện của x để biểu thức P xác định
b,Chứng minh rằng với mọi giá trị x nguyên thỏa mãn ĐKXĐ thì P nhận giá trị nguyên
Bài 3 . Chứng minh các biểu thức sau không phụ thuộc vào biến B = (4-x^2 / x-3 + 2x - 2x^2 / 3 - x + 5 - 4x / x-3 ) . 1/ x-3
Dùng định nghĩa chứng minh hai phân thức bằng nhau chứng tỏ rằng:
\(\dfrac{x^3+8}{x^2-2x+4}\)= x+2
Chứng minh biểu thức không phụ thuộc vào biến
A = (x-1)(2x+1)+(x+1)2-x(3x+1)
Chứng minh phân thức sau không phụ thuộc vào biến
A= \(\dfrac{(x^2+a)(1+a)+a^2x^2+1}{(x^2-a^2)(1-a)+a^2x^2+1}\)
chứng minh rằng: \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)với mọi số x,y nguyên dương
bài 1
a\(\dfrac{x+3}{2x-2}-\dfrac{4}{x^2-1}.\dfrac{x+1}{2}\)
b\(\left(x^2-4\right)\left(\dfrac{1}{x+2}+\dfrac{1}{2-x}-1\right)\)
bài 2
cho hình bình hành ABCD có AD= 2AB góc a bằng 60 độ. Gợi E ,F là chung diểm của BC và AD
a/ chứng minh rằng tứ giác ABEF là hình thoi
b/ chứng minh rằng tứ giác BFDC là hình thang cân
c/ lấy điểm M đối xứng với điểm A qua B chứng minh tứ giác BMCD là hình chữ nhật
monh các bậc CAO NHÂN giải hộ mình với ạ
1, Rút gọn các phân thức sau :
a, \(\dfrac{x^2-xy}{3xy-3y^2}\) (x # y, y # 0)
b, \(\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\) (b # 0, x # \(\pm1\))
c, \(\dfrac{4x^2-4xy}{5x^3-5x^2y}\) ( x 3 ), x # y)
d, \(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\) (x+y+z # 0)
e, \(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\) ( x # 0, x # \(\pm y\))
2, Rút gọn, rồi tính giá trị các phân thức sau :
a, A= \(\dfrac{2x^2+2x\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\) với x = \(\dfrac{1}{2}\)
b, B=\(\dfrac{x^3-x^2y+xy^2}{x^3+y^3}\) với x = -5; y = 10
3, Rút gọn các phân thức sau :
a, \(\dfrac{\left(a+b\right)^2-c^2}{a+b+c}\)
b, \(\dfrac{a^2+b^2-c^2+2ab}{a^2-b^2+c^2+2ac}\)
c, \(\dfrac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}\)
chứng minh đẳng thức
[(3/x-y+3x/x^2-y^2)]: 2x+y/x^2+2xy+y^2]x-y/3=x+y