\(B=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{x+9\sqrt{x}}{9-x};\left(x\ge0;x\ne9;x\ne16\right)\)
\(B=\dfrac{3}{\sqrt{x}-3}+\dfrac{2}{\sqrt{x}+3}+\dfrac{x-5\sqrt{x}-3}{x-9}\)
\(B=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{x+\sqrt{x}}{x-1};\left(x>0;x\ne1\right)\)
Cho biểu thức D = \(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
với \(x\ne9,x\ge0\)
a) Rút gọn D
b)Tìm x để \(D< \dfrac{-1}{4}\)
chứng minh
a. \(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\sqrt{xy}\)
b. \(\frac{\sqrt{x+2\sqrt{x-2}-1}.\left(\sqrt{x-2}-1\right)}{\sqrt{x}-3}=\sqrt{x}+\sqrt{3}\) Với x \(\ge\)2; x \(\ne\)3
c.\(\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\) Với a > 0; a \(\ne\)1
d.\(\sqrt{\frac{x-6\sqrt{x}+9}{x+6\sqrt{x}+9}}\) Với x \(\ge\) 0
e. \(\left(x-y\right).\sqrt{\frac{xy}{\left(x-y\right)^2}}\)
Rút gọn biểu thức
a)\(\sqrt{3}-\sqrt{2}-\sqrt{\sqrt{3}+\sqrt{2}}\)
b)\(\sqrt{11-4\sqrt{7}}-\sqrt{2}\cdot\sqrt{8+3\sqrt{7}}\)
c)\(\frac{x+\sqrt{xy}}{y+\sqrt{xy}}\)
d)\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{x-\sqrt{x}}\left(x>0;x\ne1\right)\)
e)\(\frac{4-4\sqrt{x}}{x-2\sqrt{x}-35}+\frac{2}{\sqrt{x}-7}-\frac{3}{\sqrt{x}+5}\left(x\ge0:x\ne49\right)\)
f)\(\frac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}:\frac{1}{\sqrt{x}-\sqrt{y}}\)
\(A=\frac{7}{\sqrt{X}+8}\)
\(B=\frac{\sqrt{X}}{\sqrt{X}-3}+\frac{2\sqrt{X}-24}{X-9}\)
( VỚI \(X\ge0,X\ne9\) )
a. tính giá trị của A khi x=25
b. chứng minh B =\(\frac{\sqrt{x}+8}{\sqrt{x}+3}\)
c. tìm \(x\in z\) để P=A.B có giá trị nguyên
d. tìm mã P = ?
e, tìm x để P = \(\frac{1}{2}\)
g. so sánh P với \(\frac{-1}{2}\)
mọi người giúp e với ạ e đang cần gấp
cảm ơn mn nhiều nha
Rút gọn:
\(\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{x-6\sqrt{x}+9}{\left(2-\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
B=(\(\frac{2\sqrt{x}}{\sqrt{x}+3}\)+\(\frac{\sqrt{x}}{\sqrt{x}-3}\)-\(\frac{3x+3}{x-9}\)):\(\left(\frac{\sqrt{x}+1}{\sqrt{x}-3}\right)\)
a, chứng minh rằng B=\(\frac{-3}{\sqrt{x}+3}\)
b, tính giá trị của x để 2B=A+1
cho p=\(\frac{12}{\sqrt{x}+5}\) và q=\(\frac{\sqrt{x}}{\sqrt{x}+3}-\frac{\sqrt{x}-15}{9-x}\)
tìm gtrị của x để p= /q/
bài 2
cho b=\(\left[\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{1-x}\right]:\left[\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right]\)
vs 0< hoặc = x< hoặc =1/9 so sah b vs \(\sqrt{b}\)
Chứng minh:
\(\left(\frac{2-x\sqrt{x}}{2-\sqrt{x}}+\sqrt{x}\right).\frac{2-\sqrt{x}}{2-x}=\sqrt{x}+1\)