Giúp mk nha, mơn mn nhiều ạ
Chứng minh:
\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}\) không là một số nguyên
Giúp mk nhaaaaaa!
a) Chứng minh: \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}< \frac{3}{2}\)
b) Chứng minh: \(3< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}< 6\)
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Bài 1: Chứng minh rằng: \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Bài 2: Cho \(n\in N;n>1\). Chứng minh rằng: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}\notin N\)
chứng minh rằng:
A=\(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{44}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}< \frac{1}{2}\)
Chứng minh rằng :
A=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+....+\frac{2!}{n!}< 1\)
Chứng minh rằng \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}=1-\frac{1}{2^9}\)
Chứng minh rằng:
\(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Cho P=\(\frac{1}{5}+\frac{1}{14}+\frac{1}{28}+\frac{1}{41}+\frac{1}{61}+\frac{1}{85}+\frac{1}{97}\)
Chứng minh rằng P<1/2