a) \(\dfrac{\left(2+\sqrt{a}\right)^2-\left(\sqrt{a}+1\right)^2}{2\sqrt{a}+3}=\dfrac{\left(2+\sqrt{a}-\sqrt{a}-1\right)\left(2+\sqrt{a}+\sqrt{a}+1\right)}{2\sqrt{a}+3}\)
\(=\dfrac{1.\left(2\sqrt{a}+3\right)}{2\sqrt{a}+3}=1\)
b) \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2\)
\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\dfrac{1}{\left(1+\sqrt{a}\right)^2}\)
\(=\left(a+\sqrt{a}+1+\sqrt{a}\right).\dfrac{1}{\left(\sqrt{a}+1\right)^2}=\left(a+2\sqrt{a}+1\right).\dfrac{1}{\left(\sqrt{a}+1\right)^2}\)
\(=\left(\sqrt{a}+1\right)^2.\dfrac{1}{\left(\sqrt{a}+1\right)^2}=1\)
a, \(VT=\dfrac{\left(2+\sqrt{a}\right)^2-\left(\sqrt{a}+1\right)^2}{2\sqrt{a}+3}=\dfrac{a+4\sqrt{a}+4-a-2\sqrt{a}-1}{2\sqrt{a}+3}\)
\(=\dfrac{2\sqrt{a}+3}{2\sqrt{a}+3}=1=VP\)
Vậy ta có đpcm
b, \(VT=\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2\)
\(=\left(1+\sqrt{a}+a+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2=\dfrac{\left(1+\sqrt{a}\right)^2}{\left(1+\sqrt{a}\right)^2}=1=VP\)
Vậy ta có đpcm
a) Ta có: \(\dfrac{\left(2+\sqrt{a}\right)^2-\left(\sqrt{a}+1\right)^2}{2\sqrt{a}+3}\)
\(=\dfrac{a+4\sqrt{a}+4-a-2\sqrt{a}-1}{2\sqrt{a}+3}\)
\(=\dfrac{2\sqrt{a}+3}{2\sqrt{a}+3}=1\)
b) Ta có: \(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right):\left(1+\sqrt{a}\right)^2\)
\(=\left(1+\sqrt{a}+\sqrt{a}+a\right):\left(1+\sqrt{a}\right)^2\)
\(=\left(1+\sqrt{a}\right)^2:\left(1+\sqrt{a}\right)^2=1\)