Biến đổi vế trái
\(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)=\(\left(\sqrt{3+\sqrt{5}}\right)^2.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
=\(\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=\sqrt{4}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
\(=2\sqrt{10\left(3+\sqrt{5}\right)}-2\sqrt{2\left(3+\sqrt{5}\right)}\)
\(=2\sqrt{30+10\sqrt{5}}-2\sqrt{6+2\sqrt{5}}\)
\(=2\sqrt{\left(5+\sqrt{5}\right)^2}-2\sqrt{\left(\sqrt{5}+1\right)^2}\)
\(=2\left(5+\sqrt{5}\right)-2\left(\sqrt{5}+1\right)\)
\(=10+2\sqrt{5}-2\sqrt{5}-2=8\)
Sau khi biến đổi ta thấy vế trái bằng vế phải. Vậy đẳng thức đã được chứng minh