Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Trâm Tăng

Chứng minh đẳng thức : \(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}=8\)

Nguyễn Huế Anh
26 tháng 10 2017 lúc 14:37

Biến đổi vế trái

\(\left(3+\sqrt{5}\right).\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)=\(\left(\sqrt{3+\sqrt{5}}\right)^2.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

=\(\sqrt{\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=\sqrt{4}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\sqrt{10\left(3+\sqrt{5}\right)}-2\sqrt{2\left(3+\sqrt{5}\right)}\)

\(=2\sqrt{30+10\sqrt{5}}-2\sqrt{6+2\sqrt{5}}\)

\(=2\sqrt{\left(5+\sqrt{5}\right)^2}-2\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=2\left(5+\sqrt{5}\right)-2\left(\sqrt{5}+1\right)\)

\(=10+2\sqrt{5}-2\sqrt{5}-2=8\)

Sau khi biến đổi ta thấy vế trái bằng vế phải. Vậy đẳng thức đã được chứng minh


Các câu hỏi tương tự
Ly Ly
Xem chi tiết
Ly Ly
Xem chi tiết
Vy Trần Thảo
Xem chi tiết
Ly Ly
Xem chi tiết
Nguyễn Thảo Nguyên
Xem chi tiết
Ly Ly
Xem chi tiết
Nguyễn Quân
Xem chi tiết
Nguyễn Hoàng trung
Xem chi tiết
Anh Quynh
Xem chi tiết