a,\(\dfrac{x-y}{xy}+\dfrac{y-z}{yz}+\dfrac{z-x}{zx}\)
=\(\dfrac{\left(x-y\right).z}{xyz}+\dfrac{\left(y-z\right).x}{xyz}+\dfrac{\left(z-x\right).y}{xyz}\)
=\(\dfrac{xz-yz}{xyz}+\dfrac{xy-xz}{xyz}+\dfrac{yz-xy}{xyz}\)
=\(\dfrac{xz-yz+xy-xz+yz-xy}{xyz}\)
=\(\dfrac{0}{xyz}\)=0
Vậy biểu thức trên ko phụ thuộc vào x,y,z
b,\(\dfrac{1}{\left(x-y\right).\left(y-z\right)}-\dfrac{1}{\left(x-z\right).\left(y-z\right)}-\dfrac{1}{\left(x-y\right).\left(x-z\right)}\)
=\(\dfrac{1.\left(x-z\right)}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}-\dfrac{\left(x-y\right).1}{\left(x-z\right)\left(y-z\right)\left(x-y\right)}-\dfrac{1\left(y-z\right)}{\left(x-y\right)\left(x-z\right)\left(y-z\right)}\)
=\(\dfrac{x-z-x+y-y+z}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=\(\dfrac{0}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}\)=0
Vậy biểu thức trên ko phụ thuộc vào x,y,z