Chứng minh rằng trong một tam giác cân, đường trung trực ứng với cạnh đáy đồng thời là đường phân giác, đường trung tuyến và đường cao cùng xuất phát từ đỉnh đối diện với cạnh đó
Cho tam giác ABC. Hai đường phân giác của các cặp góc ngoài đỉnh B và C, đỉnh C và A, đỉnh A và B lần lượt cắt nhau tại A', B', C'. Chứng minh rằng AA', BB', CC' là các đường cao của tam giác A'B'C'. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C' ?
trong tam giác có một đường cao đồng thời là đường trung trực tam giác đó là tam giác cân
Chứng minh rằng trong một tam giác, tia phân giác của một góc trong và hai tia phân giác của hai góc ngoài không kề với nó đồng quy tại một điểm, điểm đó cách đều ba đường thẳng chứa ba cạnh của tam giác ?
Cho tam giác ABC không là tam giác cân. Khi đó trực tâm của tam giác ABC là giao điểm của :
(A) Ba đường trung tuyến (B) Ba đường phân giác
(C) Ba đường trung trực (D) Ba đường cao
Hãy chọn phương án đúng ?
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.
Câu 19: Tam giác có một đường cao đồng thời là đường trung tuyến xuất phát từ một
đỉnh thì tam giác đó là
A. tam giác cân. B. tam giác vuông.
C. tam giác đều. D. tam giác nhọn.
chứng minh rằng trong một tam giác cân, đường cao xuất phát từ đỉnh đối diện với đáy đồng thời là đường phân giác cùng xuất phát từ đỉnh này