chứng minh
1/4 +1/16+1/32+1/64+1/100+1/144+1/196<1/2
Chứng tỏ rằng: 1/4+1/16+1/36+1/64+1/100+1/144+1/196<1/2
Rút gọn giúp mình với
$\frac{1}{4}$+$\frac{1}{16}$+$\frac{1}{36}$+$\frac{1}{64}$+$\frac{1}{100}$+$\frac{1}{144}$+$\frac{1}{196}$
cmr: \(\dfrac{1}{4}\)+\(\dfrac{1}{16}\)+\(\dfrac{1}{36}\)+\(\dfrac{1}{64}\)+\(\dfrac{1}{100}\)+\(\dfrac{1}{144}\)+\(\dfrac{1}{196}\)< \(\dfrac{1}{2}\)
Tìm x biết
2x/15+2x/35+2x/63+....+2x/195=4/5
Chứng minh rằng 1/2-1/4+1/8-1/16+1/32-1/1/64<1/3
BT1: CMR:
a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)
c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)
d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)
f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)
BT2: Tính tổng
a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)
BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
CMR: 1 < S < 2
\(F= 1/2 +1/4+1/8+1/16+1/32+1/64\)
Chứng minh rằng: \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+...+\dfrac{1}{10000}< \dfrac{1}{2}\)
b,(1-1/49)x(1-1/64)x(1-1/81)x(1-1/100)x(1-1/121)x(1-1/144)