\(\frac{1-tan^2x}{1+tan^2x}=\frac{cos^2x\left(1-tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{cos^2x-sin^2x}{cos^2x+sin^2x}=cos^2x-sin^2x\)
\(=\left(cos^2x-sin^2x\right).1=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=cos^4x-sin^4x\)
\(\frac{1-tan^2x}{1+tan^2x}=\frac{cos^2x\left(1-tan^2x\right)}{cos^2x\left(1+tan^2x\right)}=\frac{cos^2x-sin^2x}{cos^2x+sin^2x}=cos^2x-sin^2x\)
\(=\left(cos^2x-sin^2x\right).1=\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)=cos^4x-sin^4x\)
chứng minh (tan^2x-sin^2x)/(cot^2x-cos^2x)=tan^6x
Chứng minh đẳng thức
(tan^3x/sin^2x)-(1/sinx.cosx)+ (cot^3x/cos^2x)=tan^3x+cot^3x
Chứng minh đẳng thức sau
Sin^2x-tan^2× = tan^6x.(cos^2x-cot^2x)
Câu 1 : Dùng công thức cộng chứng minh các đẳng thức sau :
a/ sin(\(\frac{\pi}{4}+x\)) -sin \(\left(\frac{\pi}{4}-x\right)\)=\(\sqrt{2}sinx\)
b/ cos(x+y) cos(x-y)=cos\(^2\)x - sin\(^2\)y
c/\(\frac{tan^2x-tan^2y}{1-tan^2x.tan^2y}=tan\left(x+y\right)tan\left(x-y\right)\)
d/ cot2x=\(\frac{cot^2x-1}{2cotx}\)
e/ sin15\(^o\) + tan30\(^o\) cos15\(^o\)=\(\frac{\sqrt{6}}{3}\)
f/ \(cos^2x-sin\left(\frac{\pi}{6}+x\right)sin\left(\frac{\pi}{6}-x\right)=\frac{3}{4}\)
h/ \(\frac{tanx+tany}{tan\left(x+ y\right)}-\frac{tanx-tany}{tan\left(x-y\right)}=-2tanx.tany\)
Đơn giản biểu thức
(Cos^2x-sin^2x)/ (cot^2-tan^2x)
-cos^2x
1/ \(\alpha\ne\frac{\pi}{2}+k\pi,k\in Z\) chứng minh rằng: \(\frac{\sin^2\alpha-\cos^2\alpha}{1+2\sin\cos}=\frac{\tan-1}{\tan+1}\)
Cho tam giác ABC chứng minh:
a)\(sin\frac{A}{2}=cos\frac{B}{2}.cos\frac{C}{2}-sin\frac{B}{2}sin\frac{C}{2}\)
b)\(\frac{tan^2A-tan^2B}{1-tan^2A.tan^2B}=-tan\left(A-B\right).tanC\)
c) cotA.cotB + cotB.cotC+cotC.cotA=1
Chứng minh rằng :
tan α + cos α / 1+sin α = 1/ cos α
chứng minh: (sin^2x/1+cotx)-(cos^2x/1+tanx)=tanx-1