Ôn tập toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
❄️Lunar Starlight

Cho:\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{1998}\) với \(m,n\in N\)

Chứng minh rằng \(m⋮1999\)Nêu bài toán tổng quát

Princess Starwish
21 tháng 7 2016 lúc 14:56

\(\frac{m}{n}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{1998}\).Từ 1 đến 1998 có 1998 số. Nên vế phải có 1998 số hạng nên ta ghép thành 999 cặp như sau :

\(\frac{m}{n}=\left(1+\frac{1}{1998}\right)+\left(\frac{1}{2}+\frac{1}{1997}\right)+\left(\frac{1}{3}+\frac{1}{1996}\right)+.....+\left(\frac{1}{999}+\frac{1}{1000}\right)\)\(=\frac{1999}{1.1998}+\frac{1999}{2.1997}+\frac{1999}{3.1996}+.......+\frac{1999}{999.1000}\)

Quy đồng tất cả 999 phân số này ta được:

\(\frac{m}{n}=\frac{1999a_1+1999a_2+1999a_3+........+1999a_{997}+1999a_{9998}+1999a_{999}}{1.2.3.4.5.6.7.8.9..........1996.1997.1998}\)

Với \(a_1;a_2;a_3;...;a_{998};a_{999}\in N\)

\(\frac{m}{n}=\frac{1999.\left(a_1+a_2+a_3+.......+a_{997}+a_{998}+a_{999}\right)}{1.2.3...............1996.1997.1998}\)

Vì 1999 là số nguyên tố.Nên sau khi rút gọn,đưa về dạng phân số tối giản thì từ số vẫn còn thừa số 1999.

\(\Rightarrow m⋮1999\)


Các câu hỏi tương tự
letienluc
Xem chi tiết
Nguyễn Hương Lan
Xem chi tiết
Linh Su Bông
Xem chi tiết
Cô Bé Yêu Đời
Xem chi tiết
Cô Bé Yêu Đời
Xem chi tiết
Lê Hiển Vinh
Xem chi tiết
Lại Gia Hân
Xem chi tiết
hi
Xem chi tiết
Nguyễn Trọng Thắng
Xem chi tiết