cho tam giác ABC có AB<AC, từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt tia AB tại E và AC tại F. Vẽ tia BM // EF (M thuộc AC)
a/ C/M tam giac2 ABM cân
b/ C/M MF=BE=CF
c/ qua D kẻ đường thẳng vuông gó với AH tại I. C/M IF vuông góc với AC
1.Cho hàm số f(x)=x2-1. Tìm các giá trị của x0 sao cho f(1-x0) nhận giá trị âm
2.Cho tam giác ABC có AB<AC. Từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt tia AB tại E và cắt AC tại F. Vẽ BM//EF
a, C/m ABM là tam giác cân
b, C/m MF=BE=CF
c, Qua D vẽ đường vuông góc với BC cắt tia AH tại I. C/m IF vuông góc với AC
Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)Cho tam giác ABC có AB.AC,M là trung điểm của BC ,vẽ 1 đường thẳng vuông góc với tia phân giác của góc A,cắt tia phân giác tại H,cắt AB và AC lần lượt tai E và F.Chứng minh a, BE=CF b, AE = A B + A C 2 =AB+AC2 c, BE= A B − A C 2 AB−AC2 d, góc BME= A C B − B 2 ACB−B2 (ACB,B đều là góc)
Cho \(\Delta ABC\) vuông tại A (AB>AC).Vẽ tia phân giác của góc C cắt AB tại D.Trên cạnh BC lấy điểm E sao cho CE=CA
a)Chứng minh:\(\Delta CDA=\Delta CDE\) và \(DE\perp BC\)
b)Qua C vẽ đường thẳng vuông góc với AC.Qua A vẽ đường thẳng song song với CD,hai đường này cắt nhau tại M.Chứng minh: AM=CD
c)Qua B vẽ đường thẳng vuông góc với CD tại N và cắt AC tại K.Chứng minh:AK=BEvà K;E;D thẳng hàng.
(❤Mọi Người Nhớ Giúp Mình Nha❤)
cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC, kẽ ME vuông góc với AB tại E, MF vuông góc với AC tại F. Gọi K là trung điểm của È. Từ C kẻ đường thằng song song vs AM cắt tia BA tại D chứng minh A là trung điểm BD
Cho \(\Delta ABC\left(AB>AC\right)\) , M là trung điểm của BC . Đường thẳng đi qua M và vuông góc với tia phân giác của góc A tại H cắt 2 tia AB và AC lần lượt tại E và F . CMR : a) \(\dfrac{EF^2}{4}+AH^2=AE^2\)
b)\(2\widehat{BME}=\widehat{ACB}-\widehat{B}\)
c) \(BE=CF\)
d) \(AE=\dfrac{AB+AC}{2}\)
Cho \(\Delta ABC\) có 3 góc nhọn và \(AB< AC\) . Tia phân giác của \(\widehat{BAC}\) cắt BC ở D . Tia \(BE\perp AD\) , tia BE cắt AC tại F .
a) Chứng minh AB = AF
b) Qua F , vẽ đường thẳng song song với BC cắt AD tại H . Lấy \(K\in DC\) sao cho FH = DK . Chứng minh : DH = KF và DH // KF
c) So sánh \(\widehat{ABC}\) và \(\widehat{ACB}\)
cho tam giác ABC vuông tại A (AB bé hơn AC). gọi D là trung điểm của đoạn thẳng BC, đường thẳng qua D và vuông góc với BC cắt AC tại E. trên tia đối của tia AC lấy điểm F sao cho AE=AF; đường thẳng DA cắt đường thẳng BF tại M.
a. chứng minh tam giác FAM cân
b. biết AB=3cm; BC=5cm, tính độ dài đoạn BM