Ta có :
\(y'=\sin x+x\cos x\)
\(y"=\cos x+\cos x-x\sin x=2\cos x-x\sin x\)
Vậy \(xy-2\left(y'-\sin x\right)+xy"=x^2\sin x-2\left(\sin x-x\cos x-\sin x\right)+2x\cos x-x^2\sin x=0\)
Ta có :
\(y'=\sin x+x\cos x\)
\(y"=\cos x+\cos x-x\sin x=2\cos x-x\sin x\)
Vậy \(xy-2\left(y'-\sin x\right)+xy"=x^2\sin x-2\left(\sin x-x\cos x-\sin x\right)+2x\cos x-x^2\sin x=0\)
Cho \(y=\sin\left(\ln x\right)+\cos\left(\ln x\right)\). Chứng minh hệ thức : \(y+xy'+x^2y"=0\)
Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc vào x :
a) \(y=\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
b) \(y=\cos^2\left(\dfrac{\pi}{3}-x\right)+\cos^2\left(\dfrac{\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3x}-x\right)+\cos^2\left(\dfrac{2\pi}{3x}+x\right)-2\sin^2x\)
Cho hàm số f(x)=\(sin^2\left(\dfrac{\pi}{6}-x\right)+sin^2\left(\dfrac{\pi}{6}+x\right)\) . Chứng minh rằng f '(x)=sin2x
Chứng minh rằng \(f'\left(x\right)=0;\forall x\in R\) nếu :
a) \(f\left(x\right)=3\left(\sin^4x+\cos^4x\right)-2\left(\sin^6x+\cos^6x\right)\)
b) \(f\left(x\right)=\cos^6x+2\sin^4x.\cos^2x+3\sin^2x\cos^4x+\sin^4x\)
c) \(f\left(x\right)=\cos\left(x-\dfrac{\pi}{3}\right)\cos\left(x+\dfrac{\pi}{4}\right)+\cos\left(x+\dfrac{\pi}{6}\right)\cos\left(x+\dfrac{3\pi}{4}\right)\)
d) \(f\left(x\right)=\cos^2x+\cos^2\left(\dfrac{2\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3}-x\right)\)
Bài tập 3: Cho hàm số
f( x )=c o s x. Chứng minh rằng:
2f'(x+pi/3).f'(x-pi/6)=f'(0)-f(2x+pi/6)
Bài tập 4: Cho hàm số y=3(sin^4 x +cos^4 )-2(sin^6 x +cos^6 x). Chứng minh rằng: y'=0 \-/ x€ Z
Bài tập 5: Cho hàm số
Y= (sin x/ 1+cos x)^3. CMR: y'.sinx-3y=0
Giải phương trình \(f'\left(x\right)=0\) biết rằng :
a) \(f\left(x\right)=3\cos x+4\sin x+5x\)
b) \(f\left(x\right)=1-\sin\left(\pi+x\right)+2\cos\left(\dfrac{2\pi+x}{2}\right)\)
Giải các phương trình :
a) \(f'\left(x\right)=0\) với \(f\left(x\right)=1-\sin\left(\pi+x\right)+2\cos\dfrac{3\pi+x}{2}\)
b) \(g'\left(x\right)=0\) với \(g\left(x\right)=\sin3x-\sqrt{3}\cos3x+3\left(\cos x-\sqrt{3}\sin x\right)\)
Tìm đạo hàm của hàm số sau :
\(y=\left(x\sin\alpha+\cos\alpha\right)\left(x\cos\alpha-\sin\alpha\right)\)
Tìm đạo hàm của các hàm số sau :
a) \(y=5\sin x-3\cos x\)
b) \(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\)
c) \(y=x\cos x\)
d) \(y=\dfrac{\sin x}{x}+\dfrac{x}{\sin x}\)
e) \(y=\sqrt{1+2\tan x}\)
f) \(y=\sin\sqrt{1+x^2}\)