Giải:
Ta có:
\(P=\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\)
\(\Leftrightarrow P=\dfrac{1}{2}\left[\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{zx}{y}\right)+\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\right]\)
Áp dụng BĐT AM-GM, có:
\(P=\dfrac{1}{2}\left[\left(\dfrac{xy}{z}+\dfrac{yz}{x}\right)+\left(\dfrac{yz}{x}+\dfrac{zx}{y}\right)+\left(\dfrac{zx}{y}+\dfrac{xy}{z}\right)\right]\ge\dfrac{1}{2}.\left(2\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}+2\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+2\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)\)
\(\Leftrightarrow P\ge\sqrt{\dfrac{xy}{z}.\dfrac{yz}{x}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\)
\(\Leftrightarrow P\ge x+y+z\)
\(\Leftrightarrow P\ge2019\)
\(\Leftrightarrow P_{Min}=2019\)
\("="\Leftrightarrow x=y=z=\dfrac{2019}{3}\)
Vậy ...