Bài này chỉ tìm min chứ không tìm được max bạn nhé.
Áp dụng BĐT AM-GM:
\((3-2\sqrt{2})x^2+4y^2\geq 2\sqrt{4(3-2\sqrt{2})x^2y^2}=4(\sqrt{2}-1)xy\)
\((3-2\sqrt{2})z^2+4y^2\geq 4(\sqrt{2}-1)yz\)
\((-2+2\sqrt{2})x^2+(-2+2\sqrt{2})z^2\geq 2\sqrt{(-2+2\sqrt{2})^2x^2z^2}=4(\sqrt{2}-1)xz\)
Cộng theo vế và rút gọn thu được:
\(A\geq 4(\sqrt{2}-1)(xy+yz+xz)=4(\sqrt{2}-1)\)
Vậy $A_{\min}=4(\sqrt{2}-1)$
Bài này chỉ tìm min chứ không tìm được max bạn nhé.
Áp dụng BĐT AM-GM:
\((3-2\sqrt{2})x^2+4y^2\geq 2\sqrt{4(3-2\sqrt{2})x^2y^2}=4(\sqrt{2}-1)xy\)
\((3-2\sqrt{2})z^2+4y^2\geq 4(\sqrt{2}-1)yz\)
\((-2+2\sqrt{2})x^2+(-2+2\sqrt{2})z^2\geq 2\sqrt{(-2+2\sqrt{2})^2x^2z^2}=4(\sqrt{2}-1)xz\)
Cộng theo vế và rút gọn thu được:
\(A\geq 4(\sqrt{2}-1)(xy+yz+xz)=4(\sqrt{2}-1)\)
Vậy $A_{\min}=4(\sqrt{2}-1)$