Ta có \(x+\frac{1}{x}=a\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\)
\(\Leftrightarrow x^2+2x\cdot\frac{1}{x}+\frac{1}{x^2}=a^2\)
\(\Leftrightarrow x^2+2+\frac{1}{x^2}=a^2\)
\(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
Vậy biểu thức A biểu diễn theo a là:
\(A=x^2+\frac{1}{x^2}=a^2-2\)
\(x+\frac{1}{x}=a\Rightarrow x^2+\frac{1}{x^2}=\left\{\begin{matrix}!a!\ge2\\a^2-2\end{matrix}\right.\)