Ta co:
\(N=\Sigma_{cyc}\sqrt[3]{5x+3y}=\frac{1}{4}\Sigma_{cyc}\sqrt[3]{8.8.\left(5x+3y\right)}\le\frac{1}{4}\Sigma_{cyc}\frac{5x+3y+16}{3}=\frac{1}{12}\left[8\left(x+y+z\right)+48\right]=6\)Dau '=' xay ra khi \(x=y=z=1\)
Ta co:
\(N=\Sigma_{cyc}\sqrt[3]{5x+3y}=\frac{1}{4}\Sigma_{cyc}\sqrt[3]{8.8.\left(5x+3y\right)}\le\frac{1}{4}\Sigma_{cyc}\frac{5x+3y+16}{3}=\frac{1}{12}\left[8\left(x+y+z\right)+48\right]=6\)Dau '=' xay ra khi \(x=y=z=1\)
2) Cho các số x, y, z khác o. Biết rằng x(1/x + 1/y) + y(1/z + 1/x) + z(1/x + 1/y) = -2 và x3 + y3 + z3. Tính P = 1/x + 1/y 1/z
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
3) Tìm các số nguyên x và y sao cho (x2 - x + 1)(y2 + xy) = 3x -1
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
2) Cho x2 - yz/x(1 - yz) = y2 - xz/y(1 - xz) với x khác y; yz khác 1; xz khác 1; xy khác 0. CMR: x + y + x = 1/x + 1/y + 1/z
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
3) Cho các số dương a và b thỏa mãn a - b = \(\sqrt{1-b^2}\) - \(\sqrt{1-a^2}\) Tính a2 + b2
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
1) Cho các sốc a, b, c thỏa mãn abc = 1/2; a^3 > 36. CMR: a^2/3 + b^2 + 4c^2 > ab + 2bc + 2ca
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Cho a,b,c là các số thực dương. CMR: \(\frac{a}{c^2}+\frac{b}{a^2}+\frac{c}{b^2}\ge\frac{9}{a+b+c}\)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Cho x ≥ 1; y ≥ 2; z ≥ 3 và \(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
Chứng minh M ≤ \(\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\)
1) Chứng minh các số thực a, b, c, d tùy ý, ta có: a^4 + b^4 + c^2 + 1 >= 2a(ab^2 - a + c + 1)
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!!
Rút gọn:
\(A=\left[\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\cdot\dfrac{2}{\sqrt{x}+\sqrt{y}}+\dfrac{1}{x}+\dfrac{1}{y}\right]\cdot\dfrac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)