cho đường tròn tâm o , các điểm b và c nằm trên đường tròn . các tiếp tuyến tại b và c cắt nhau tại a . gọi m là điểm của cung nhỏ bc . tiếp tuyến tại m cắt ab và ac theo thứ tự d và e . gọi giao điểm của od và oe với bc lần lượt là i và k
Chứng minh rằng :
a) các tứ giác OBDK , DIKE là tứ giác nội tiếp ,
b)ba đường thẳng OM , DK , EI đồng quy
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB
Từ một điểm A nằm bên ngoài đường tròn (O), kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Qua điểm M thuộc cung nhỏ BC, kẻ tiếp tuyến với đường tròn (O), nó cắt các tiếp tuyến AB và AC theo thứ tự ở D và E. Chứng minh rằng chu vi tam giác ADE bằng 2AB
Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn . Qua M vẽ hai tiếp tuyến MA , MB với đường tròn (O) trong đó A , B là hai tiếp điểm sao cho AMB = 90 độ . Qua điểm C trên cung nhỏ AB kẻ tiếp tuyến với đường tròn (o) cắt MA , MB tại P vs Q .
CMR : 1/3 ( MA + MB ) < PQ < 1/2 ( MA + MB)
o l m . v n
MỌI NGƯỜI ƠI GIÚP MÌNH ĐI ✰ Cho đường tròn O,R và một đường thẳng d cắt O tại tại CD . một điểm M di chuyển trên d sao cho MC > MD và ở ngoài O qua M kẻ 2 tiếp tuyến MA , MB . Gọi H là trung điểm của CD và giao điểm của AB với MO , với OH lần lượt là E, F . Đoạn thẳng OM cắt cung nhỏ tại I
✿ CMR : OM VUÔNG GÓC AB , OH.OF=OE.OM
Cho đường tròn (O; R) đường kính AB. Vẽ các tia tiếp tuyến Ax, By với nửa đường tròn. Lấy điểm M di động trên tía Ax, điểm N di động trên tia Oy sao cho AM.BN = R2 . Chứng minh rằng a) MN là tiếp tuyến của đường tròn (O) b) Đường tròn ngoại tiếp tam giác OMN luôn tiếp xúc với một đường thẳng cố định.
(ko cần vẽ hình, giải chi tiết)
Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên đường thẳng d lấy điểm M khác điểm A. Qua điểm M vẽ hai tiếp tuyến ME và MF tới đường tròn (O) (E và F là các tiếp điểm). EF cắt OM và OA lần lượt tại H và K.
1) Chứng minh: H là trung điểm của EF.
2) Chứng minh rằng bốn điểm O, M, A, F cùng thuộc một đường tròn.
3) Chứng minh: \(OK.OA=R^2\)
Cho đường tròn (O;R) và 1 điểm A sao cho OA=2R, vẽ các tiếp tuyến AB,AC(B,C là các tiếp điểm) đường thẳng OA cắt BC tại H, cắt cung nhỏ và cung lớn BC lần lượt tại M,N
a)C/m: OA vuông góc BC, và R^2=OA.HM
b) Vẽ các tuyến bất kỳ ADE, gọi K là trung điểm của DE. C/m: 5 điểm A,B,O,K,C cùng thuộc 1 đường tròn
Cho đường tròn (O; 2cm), các tiếp tuyến AB và AC kẻ từ A đến đường tròn vuông góc với nhau tại A (B và C là các tiếp điểm)
a) Tứ giác ABOC là hình gì ? Vì sao ?
b) Gọi M là điểm bất kì thuộc cung nhỏ BC. Qua M kẻ tiếp tuyến với đường tròn, cắt AB và AC theo thứ tự tại D và E. Tính chu vi tam giác ADE ?
c) Tính số đo góc DOE ?