Cho tứ giác ABCD. Gọi E, F, O lần lượt là trung điểm của AC, BD, EF. Chứng minh:
\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
cho 4 điểm A, B, C, D. Gọi M, N, P, Q lần lượt là trung điểm của AC, BD, AD, BC. chứng minh
a) AB→ - CD→ = AC→ - BD →= 2PQ→
cho tứ giác ABCD . EF lần lượt là trung điểm AB và CD . G là trung điểm EF với O là điểm tùy ý chứng minh
a) vecto AB +vecto AC+vecto AD = 4 vecto AG
b) vecto GA + vecto GB + vecto GC + vecto GD = vecto 0
c) vecto OG = 1/2 ( vecto OA + vecto OB + vecto OC + vecto OD)
Cho 4 điểm A,B,C,D
a,gọi i,j lần lượt là trung điểm của 2 đoạn
thẳng AB và CD.chứng minh rằng 2ij=AC+BD=AD+BC
b,tìm điểm M sao cho:4MA+3MB+MC=0
c,Hãy phân tích CI theo 2 vecto CB và CA
Cho tam giác ABC có trọng tâm G, gọi M, N, P lần lượt là trung điểm của BC, CA, AB |
a) Tìm các vectơ bằng vecto MN b) Dựng điểm I sao cho vecto AG bằng vecto PI
c) Tứ giác BGMI là hình gì ?
Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, BC, CA. Tính tổng các vectơ
AM + BN + CP
Cho tam giác ABC có M, N lần lượt là trung điểm của AB và AC, điểm K nằm trên đoạn MN sao cho \(\overrightarrow{KM}=-2\overrightarrow{KN}\). Tính \(\overrightarrow{AK}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
a.Hình chữ nhật ABCD. AB = 4a, BC = 2a, AC∩ BD = {O}. M là trung điểm CD
Tính tổng vecto AB+OM
b.Cho tam giác ABC đều. AB = a. M, N là trung điểm AC và AB. Tính tổng vecto CM +BN
Cho tam giác ABC có M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Tính
a. Vecto AB+ CA+ BC
b. Vecto AM+ AP
c. Vecto AM+ BN+ CP
giúp em với ạ:(