Cho hình vuông ABCD cạnh a. Gọi I là trung điểm của AB. Gọi M là điểm đối xứng của D qua C. Gọi P là điểm đối xứng của M qua D. Trên tia DA lấy điểm Q sao cho ΔPDQ ∼ ΔIAD. Trên tia BC lấy điểm N sao cho ΔMCN ∼ ΔIAD.
a) Tứ giác MNPQ là hình gì?
b) Đường thẳng DI cắt PN tại E, cắt QM tại F.
Chứng minh: EF = \(\dfrac{MN+PQ}{2}\)
c) Chứng minh AQPN là hình bình hành.
d) Gọi S là giao điểm của PN và QM. Gọi T là giao điểm của QI và DC, R là trung điểm của PQ. Chứng minh: S, T, R thẳng hàng.
Cho tam giác ABC và đường trung tuyến BM. Trên đoạn BM lấy điểm D sao cho \(\dfrac{BD}{DM}=\dfrac{1}{2}\). Tia AD cắt BC ở K. Tìm tỉ số diện tích của tam giác ABK và tam giác ABC ?
Cho hình chữ nhật ABCD, AB = 2AC. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM = CP. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng kẻ qua P song song với MQ cắt AC tại N.
a) Chứng minh tứ giác MNPQ là hình bình hành
b) Khi M là trung điểm của AD. Chứng minh BQ vuông góc với NP
c) Đường thẳng AP cắt DC tại điểm F. Chứng minh rằng \(\dfrac{1}{AB^2}=\dfrac{1}{AP^2}+\dfrac{1}{4AF^2}\)
cho hình chữ nhật abcd . trên cạnh ad à bc lấy điểm m,n sao cho am = cn . trên cạnh ab lấy điểm k sao cho độ dài cạnh ab gấp 4 lần cạnh ak . đoạn thẳng mn cắt các cạnh kd,kc lần lượt tại e và f .
a) tính tỉ số diện tích tam giác akd và tam giác bkc .
b) so sánh diện tích tam giác KEF với tổng diện tích hai tam giác EDM và FCN .
Cho tam giác nhọn ABC, có AB = 12cm , AC = 15 cm . Trên các cạnh
AB và AC lấy các điểm D và E sao cho AD = 4 cm, AE = 5cm
a, Chứng minh rằng: DE // BC, từ đó suy ra: Δ ADE đồng dạng với ΔABC?
b, Từ E kẻ EF // AB (F thuộc BC). Tứ giác BDEF là hình gì? Từ đó suy ra: ΔCEF đồng dạng ΔEAD?
c, Tính CF và FB khi biết BC = 18 cm
Cho tam giác ABC . Trên cạnh AB lấy điểm M , trên cạnh AC lấy điểm N sao cho \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\); đường trung tuyến AI (I thuộc BC ) cắt đoạn thẳng MN tại K
Chứng minh rằng KM =KN
cho hình bình hànhABCD có AD=6cm,AB=8cm . Trên cạnh BC lấy M sao cho BM=2/3BC. Đường thẳng AM cắt đường chéo BD tại I và cắt đường thẳng DC tại N
a) Chứng minh tam giác MAB đồng dạng tam giác AND