Cho tứ giác ABCD có AD=BC và AB<CD. Trung điểm của cạnh AB và CD lần lượt là
M và N. Trung điểm của các đường chéo BD và AC lần lượt là P và Q.
a) Chứng minh tứ giác MPNQ là hình thoi
b) Kéo dài hai cạnh DA và CB cắt nhau tại G, kẻ tia phân giác Gx của góc AGB. Chứng
minh Gx//MN.
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN
Cho tam giác nhọn ABC có các đường cao AD, BE cắt nhau tại H. Gọi O là trung điểm của BC và K là điểm đối xứng với H qua O. Kẻ đường thẳng qua H vuông góc với HK cắt các đường thẳng AB, AC lần lượt tại M và N.Chứng minh: HM=HN
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy
Cho tam giác ABC vuông ở A, đường cao AH. Gọi I và K lần lượt là hình chiếu vuông góc của H lên các cạnh AB và AC. Gọi O là giao điểm của Ah và IK. Hạ KD vuông góc với BC tại D. CM: Ba đường thẳng AD, CO và HK đồng quy