Bài 5: Khoảng cách

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau, OB = OC = kOA (k là số thực).Gọi M là trung điểm của AB. Tìm k để góc giữa hai đường thẳng OM và AB bằng \(60^o\)

Nguyễn Việt Lâm
19 tháng 3 2021 lúc 15:55

\(AB=\sqrt{OA^2+OB^2}=OA\sqrt{1+k^2}\)

\(OM=BM=\dfrac{1}{2}AB=\dfrac{OA}{2}\sqrt{1+k^2}\)

\(cos\widehat{OMB}=cos60^0=\dfrac{OM^2+BM^2-OB^2}{2OM.BM}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{OA^2\left(\dfrac{k^2+1}{4}\right)+OA^2\left(\dfrac{k^2+1}{4}\right)-k^2OA^2}{2.OA^2\left(\dfrac{k^2+1}{4}\right)}=\dfrac{1}{2}\)

\(\Leftrightarrow\dfrac{1-k^2}{1+k^2}=\dfrac{1}{2}\Rightarrow k^2=\dfrac{1}{3}\Rightarrow k=\dfrac{1}{\sqrt{3}}\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Trần Hà My
Xem chi tiết
Hien Phan
Xem chi tiết