Bài 5: Khoảng cách

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Julian Edward

Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau, OA = 2OB = 3OC. Gọi M là trung điểm của AB. Tính cosin giữa hai đường thẳng OM và AB?

Lê Ng Hải Anh
18 tháng 3 2021 lúc 21:32

Bạn tự vẽ hình nhé!

Giả sử: OC = a ⇒ OB = 3/2a và OA  = 3a

Xét tam giác OAB vuông tại O có: \(AB=\sqrt{OA^2+OB^2}=\dfrac{3\sqrt{5}}{2}a\)

\(\Rightarrow AM=BM=OM=\dfrac{1}{2}AB=\dfrac{3\sqrt{5}}{4}a\)

Xét tam giác OMA, có:

\(\cos\widehat{AOM}=\dfrac{OM^2+OA^2-AM^2}{2OM.OA}=\dfrac{OA}{2OM}=\dfrac{2\sqrt{5}}{5}\) 

Xét tam giác OMB, có:

\(\cos\widehat{BOM}=\dfrac{OM^2+OB^2-BM^2}{2OM.OB}=\dfrac{OB}{2OM}=\dfrac{\sqrt{5}}{4}\)

Ta có: \(\overrightarrow{OM}.\overrightarrow{AB}=\overrightarrow{OM}\left(\overrightarrow{OB}-\overrightarrow{OA}\right)=\overrightarrow{OM}.\overrightarrow{OB}-\overrightarrow{OM}.\overrightarrow{OA}\)

\(=\dfrac{3\sqrt{5}}{4}a.\dfrac{3}{2}a.\dfrac{2\sqrt{5}}{5}-\dfrac{3\sqrt{5}}{4}a.3a.\dfrac{\sqrt{5}}{4}=\dfrac{-9}{16}a^2\)

\(\Rightarrow\cos\widehat{\left(\overrightarrow{OM},\overrightarrow{AB}\right)=\dfrac{\overrightarrow{OM}.\overrightarrow{AB}}{OM.AB}=-\dfrac{1}{10}}\)

\(\Rightarrow cos\left(OM,AB\right)=\dfrac{1}{10}\)


Các câu hỏi tương tự
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
Trần Hà My
Xem chi tiết
Hien Phan
Xem chi tiết