Cho tỉ lệ thức \(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\). Chứng minh tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{b}{c}\)
cho tỉ lệ thức: \(\dfrac{a}{b}=\dfrac{c}{d}\)
chứng tỏ ta có tỉ lệ thức: \(\dfrac{ac}{bd}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh các tỉ lệ thức sau:
a) \(\dfrac{a^2-b^2}{ab}=\dfrac{c^2-d^2}{cd}\)
b) \(\dfrac{\left(a+b\right)^2}{a^2+b^2}=\dfrac{\left(c+d\right)^2}{c^2+d^2}\)
Chứng minh rằng tự tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)( a,b,c,d khác 0 , a khác b, c khác d) ta suy ra được cái tỉ lệ thức:
\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
1) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR(với giả thiết các tỉ số đều có nghĩa)
a)\(\dfrac{a-b}{a+b}=\dfrac{c-d}{c+d}\)
b)\(\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
c)\(\dfrac{2a+5b}{3a-4b}=\dfrac{2c+5d}{3c-4d}\)
2) Cho tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\). CMR ta có các tỉ lệ thức sau
a)\(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
b)\(\dfrac{7a1^2+5ac}{7a^2-5ac}=\dfrac{7b^2+5bd}{7b^2-5bd}\)
3) CMR nếu \(a^2=bc\) thì \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\). Đảo lại có đúng không?
4) CMR nếu \(\dfrac{a}{b}=\dfrac{b}{d}\) thì \(\dfrac{a^2+b^2}{b^2+d^2}=\dfrac{a}{d}\)
5) Cho tỉ lệ thức \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}.CMR\dfrac{a}{b}=\dfrac{c}{d}\)
các bn giúp bn Heo Mách với nha
CMR từ tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\) (a - b \(\ne\) 0, c - d \(\ne\) 0) ta có thể suy ra tỉ lệ thức \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Cho tỉ lệ thức: \(\dfrac{ a+b}{b+c}=\dfrac{c+d}{d+a}.\) Chứng minh: a = c hoặc a + b + c + d = 0
Cho tỉ lệ thức \(\overline{\dfrac{abc}{a+\overline{bc}}}=\overline{\dfrac{bca}{b+\overline{ca}}}.\) Chứng minh tỉ lệ thức \(\dfrac{a}{\overline{bc}}=\dfrac{b}{\overline{ca}}\)
Chứng minh rằng tự tỉ lệ thức \(\dfrac{a}{b}=\dfrac{c}{d}\)( a,b,c,d khác 0 , a khác b, c khác d) ta suy ra được cái tỉ lệ thức:
a) \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b) \(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Cho tỉ lệ thức: \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c},b\ne0.\)
Chứng minh: \(c\ne0\)