Cho 2 tập hợp \(A=\left\{x\in R|\left|x\right|\le3\right\};B=\left\{x\in R|x^2\ge1\right\}\). Tìm \(A\cap B\)
Cho hai tập hợp E={x∈R, f(x)=0}, F={x∈R, g(x)=0}. Tập hợp H={x∈R, f(x).g(x)=0}. Mệnh đề nào đúng và giải thích:
A. H= E hợp F
B. H= E giao F
C. H= E/F
D. H=F/E
Cho hai đa thức f(x) và g(x). Xét các tập hợp A={x∈R, f(x)=0}, B={x∈R,g(x)=0}, C={x∈R,f2(x)+g2(x)=0}. Mệnh đề nào đúng và giải thích:
A. C= A hợp B
B. C=A giao B
C. C=A/B
D. C=B/A
Cho hai đa thức f(x) và g(x). Xét các tập hợp A={x∈R, f(x)=0}, B={x∈R,g(x)=0}, C={x∈R,\(\dfrac{f\left(x\right)}{g\left(x\right)}=0\) } . Mệnh đề nào đúng và giải thích:
A. A hợp B
B. A giao B
C. A/B
D. B/A
( Các bạn trả lời nhanh giúp mình với !!!!!!!! )
Cho hai đa thức f(x) và g(x). Xét các tập hợp A={x∈R, f(x)=0}, B={x∈R,g(x)=0}, C={x∈R,f2(x)+g2(x)=0}. Mệnh đề nào đúng và giải thích:
A. C= A hợp B
B. C=A giao B
C. C=A/B
D. C=B/A
Xác định các tập hợp sau bằng cách liệt kê
A = {x | (2x + 1)(x 2 + x – 1)(2x 2 – 3x + 1) = 0}
B = {x | 6x 2 – 5x + 1 = 0}
C = {x | (2x + x 2 )(x 2 + x – 2)(x 2 – x – 12) = 0}
D = {x | x 2 > 2 và x < 4}
E = {x | x 2 và x > –2}
F = {x ||x | 3}
G = {x | x 2 − 9 = 0}
H = {x | (x − 1)(x 2 + 6x + 5) = 0}
I = {x | x 2 − x + 2 = 0}
J = {x | (2x − 1)(x 2 − 5x + 6) = 0}
K = {x | x = 2k với k và −3 < x < 13}
L = {x | x 2 > 4 và |x| < 10}
M = {x | x = 3k với k và −1 < k < 5}
N = {x | x 2 − 1 = 0 và x 2 − 4x + 3 = 0
Xác định các tập hợp sau bằng cách liệt kê
A = {x | (2x + 1)(x 2 + x – 1)(2x 2 – 3x + 1) = 0}
B = {x | 6x 2 – 5x + 1 = 0}
C = {x | (2x + x 2 )(x 2 + x – 2)(x 2 – x – 12) = 0}
D = {x | x 2 > 2 và x < 4}
E = {x | x 2 và x > –2}
F = {x ||x | 3}
G = {x | x 2 − 9 = 0}
H = {x | (x − 1)(x 2 + 6x + 5) = 0}
I = {x | x 2 − x + 2 = 0}
J = {x | (2x − 1)(x 2 − 5x + 6) = 0}
K = {x | x = 2k với k và −3 < x < 13}
L = {x | x 2 > 4 và |x| < 10}
M = {x | x = 3k với k và −1 < k < 5}
N = {x | x 2 − 1 = 0 và x 2 − 4x + 3 = 0
1. Mệnh đề nào đúng , giải thích ?
a ) P: ∃ xϵ R, 5x _ 3x 2 ≤ 1
2. Xem mđ đó đúng hay sai
a) P= ∃ x ϵ R: x 2 ≤ 0
b) P = ∀ x ϵ R : x ≤ x 2
c) P = ∀ x ϵ Q : 4x2 - 1 ≠ 0
d) P = ∃ x ϵ R : x2 - x + 7 nhỏ hơn 0
Cho R(x): "\(x\in R;-4x^2+4x-1\le0\)". Tìm 1 giá trị của biến để được MĐ đúng, MĐ sai.