a,
Vì Â1 + Â2 = 180o [kề bù] và Â1 = 90o
=> Â2 = 90o
Xét ∆ABC và ∆ADE, ta có:
- AB = AD [gt]
- Â1 = Â2 = 90o [cmt]
- AC = AE [gt]
=> ∆ABC = ∆ADE [c-g-c]
=> Ê1 = \(\widehat{C_1}\)
Mà \(\widehat{D_1}=\widehat{D_2}\left(đ^2\right)\)
=> \(\widehat{F_1}\) = Â2 = 90o
=> DE vuông góc BC
b,
\(4\widehat{B}=5\widehat{C}\Leftrightarrow\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}\)
Đặt k = \(\dfrac{\widehat{B}}{5}=\dfrac{\widehat{C}}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=5k\\\widehat{C}=4k\end{matrix}\right.\)
\(\Rightarrow90^o+4k+5k=180^o\Leftrightarrow9k=90^o\Leftrightarrow k=10^o\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{B}=50^o\\\widehat{C}=40^o\end{matrix}\right.\)
Mà ∆ABC = ∆ADE [cmt]
=> góc C = góc E = 40o
Vậy AÊD = 40o