a: Xét ΔABM vuông tại M và ΔACN vuông tại N có
\(\widehat{BAM}\) chung
Do đó: ΔABM~ΔACN
b: Xét ΔPNB vuông tại N và ΔPMC vuông tại M có
\(\widehat{NPB}=\widehat{MPC}\)(hai góc đối đỉnh)
Do đó: ΔPNB~ΔPMC
=>\(\dfrac{PB}{PC}=\dfrac{NB}{MC}\)
=>\(PB\cdot MC=NB\cdot PC\)
c: Ta có; ΔAMB~ΔANC
=>\(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)
=>\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\widehat{MAN}\) chung
Do đó: ΔAMN~ΔABC