Cho tam giác nhọn ABC có trung tuyến BD và CE cắt nhau tại G. trên tia đối của tia DB lấy điểm M sao cho DB = DM . trên tia đối của tia EC lấy Điểm N sao cho EN=EC . c/m rằng:
a) tâm giác ADM= tam giác CDB và 3 điểm M,A,N thẳng hàng
b)BM+CN>3BC
C) các đg thẳng AG,NB,MC đồng quy.
a: Xét ΔADM và ΔCDB có
DA=DC
góc ADM=góc CDB
DM=DB
=>ΔADM=ΔCDB
=>góc DAM=góc DCB
=>AM//BC
Xét tứ giác ACBN có
E là trung điểm chung của AB và CN
=>ACBN là hình bình hành
=>AN//BC
=>M,A,N thẳng hàng
b: BM+CN=2BD+2CE=2*3/2(BG+CG)=3(BG+CG)>3BC
c: Gọi BN cắt CM tại I
CB//MN
=>IB/IN=IC/IM=BC/MN=1/2
=>B là trung điểm của IN, C là trung điểm của IM
G là trọng tâm của ΔIMN và A là trung điểm của MN
nên I,G,A thẳng hàng
=>ĐPCM