Cho tam giác ABC, 2 đường cao AI và BK cắt nhau tại H. Gọi D là điểm đối xứng của H qua I. Vẽ CE vuông góc BD tại E. Gọi F là giao điểm của AC và BE. Vẽ FN vuông góc BC tại N. Chứng minh: a. Tứ giác AKIB nội tiếp b. Tam giác BHC = tam giác BDC c. CK = CE d. Ba đường thẳng BK, CE, FN đồng quy.
Cho (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB của (O) (A, B là các tiếp điểm). Qua M kẻ một đường thẳng d cắt đường tròn tại 2 điểm N và P (N nằm giữa M và P). Gọi K là trung điểm của NP
1) C/m KM là là tia phân giác của góc AKB
2) Gọi Q là giao điểm thứ hai của BK với (O). C/m : AQ // NP
3) Gọi H là giao điểm của AB và MO. C/m : MA2 = MH . MO = MN . MP
4) Gọi E là giao điểm của AB và OK, F là giao điểm của AB và NP. C/m : AB2= 4.HE.HF
cho tam giác ABC nội tiếp đường tròn M thuộc BC, đường trung trực của BM,CM cắt AB, AC tại C' và B'. Gọi A' là điểm đối xứng của M là B"C'. chứng minh tứ giác AA'BC nội tiếp đường tròn
Cho tam giác ABC vuông tại C có ABC = 60° Dựng tam giác cân BEC ra phía ngoài tam giác ABC sao cho BEC = 150°. Gọi D là điểm đối xứng với C qua AB, F là giao điểm của AB và DE, G là giao điểm của AB và CD.
1) Chứng minh tứ giác ABEC nội tiếp.
2) Tính số đo góc BED.
3) Chứng minh hai đường thẳng BC và FG song song.
Cho tam giác ABC với ba góc nhọn, đường cao AD. Gọi M là điểm đối xứng với D qua AB , N là điểm đối xứng với D qua AC. Gọi E, F thao thứ tự là giao điểm của MN với AC, AB.
a) Chứng minh 5 điểm A , F , D , C, N cùng thuộc một đường tròn.
b) Chứng minh AD, CF, BE đồng qui
Cho tam giác MNP cân tại M có cậnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn ( O;R). Tiếp tuyến tại N và P của đường tròn lần lượt cắt tia MP và tia MN tại E và D.
a) Chứng minh: NE2 = EP.EM
b) Chứng minh tứ giác DEPN kà tứ giác nội tiếp.
c) Qua P kẻ đường thẳng vuông góc với MN cắt đường tròn (O) tại K
( K không trùng với P). Chứng minh rằng: MN2 + NK2 = 4R2.
Cho tam giác ABC nhọn nội tiếp (O), (AB < AC), hai đường cao AD, BE, CF cắt nhau tại H.
a) CM: BCEF nội tiếp.
b) Gọi N là trung điểm của BC. Chứng minh: FC là tia phân giác của DFE và EFDN nội tiếp.
c) Đường thẳng vuông góc AB tại A cắt BE tại I. Qua A vẽ đường thẳng song song BC cắt EF tại M. MI cắt AH tại T. Chứng minh T là trung điểm của AH.
Cho tam giác ABC nhọn AB <AC , đường cao AH .M,N là hình chiếu của H trên AB,AC . MN cắt BC tại D . Trên nửa mp bờ BC chứa A vẽ nửa đường tròn đường kính CD . Qua B kẻ đường vuông góc với CD cắt nửa đường tròn tại E. Gọi O là tâm đường tròn ngoại tiếp tam giác MNE . Cm: OE vuông góc DE
Cho tam giác ABC vuông tại B .Vẽ đường tròn tâm O đường kính BC. Đường tròn này cắt AC tại D
a)Chứng minh góc ABD=góc ODC
b)Cm AB^2=AD.AC
c) Gọi I là trung điểm của AB. Chứng minh tứ giác BIDO là tứ giác nội tiếp