PI chứ nhỉ đâu có điểm L nào đâu?
Trên tia đối của tia IP lấy điểm D sao cho ID = IP.
Ta có \(\Delta MID=\Delta NIP(c.g.c)\).
Từ đó PN = DM.
Theo bất đẳng thức tam giác, ta có \(PM+PM=PM+MD>PD=2PL\)
PI chứ nhỉ đâu có điểm L nào đâu?
Trên tia đối của tia IP lấy điểm D sao cho ID = IP.
Ta có \(\Delta MID=\Delta NIP(c.g.c)\).
Từ đó PN = DM.
Theo bất đẳng thức tam giác, ta có \(PM+PM=PM+MD>PD=2PL\)
Bài 1: Cho tam giác MNP và O là một điểm bất kì nằm trong tam giác MNP, MO cắt PN ở I.
a) so sánh NO với IN +IO. từ đó chứng minh OM + ON <IN +IM
b) so sánh IM với PI +PM, từ đó chứng minh rằng IM+IN<PM+PN
c) CMR: bhaats đẳng thức tam giác OM+ON<PM+PN
cho tam giac MNP đều có cạnh dài bằng 16 cm Kẻ MQ vuông góc với NP Trên tia đối của PN lấy điểm K sao cho PK = 24 cm gọi độ dài đoạn thẳng MK là x ( cm ) Khi đó x mũ 2 bằng bao nhiêu cm
Cho tam giác ABC, gọi M là trung điểm của BC. Chứng minh rằng \(\dfrac{AB+AC-BC}{2}\) < AM < \(\dfrac{AB+AC}{2}\)
Cho tam giác ABC có AB =AC. Gọi D và E là hai điểm trên BC sao cho BD=DE=EC và AD=AE.
A) Chứng minh góc EAB= góc DAC.
B) Gọi M là trung điểm của BC. Chứng Minh rằng AM là tia phân giác của góc DAE
C) Gỉa sử góc DAE = 60 độ , có nhận xét gì về các góc của tam giác AED
Cho tam giác ABC. Lấy M là một điểm nằm trong tam giác
a) Chứng minh tổng 3 đoạn thẳng (MA+MB+MC) lớn hơn một nửa chu vi tam giác ABC
b)Lấy E là trung điểm đoạn MC. Vẽ EF vuông góc MC tại E. (F thuộc AC)
Chứng minh FM=FC
c)Chứng minh AC > AM
Vẽ luôn hình giúp mình
Cho tam giác ABC. Trên tia đối của AC lấy D sao cho AD= AC. Trên tia đối của tia AB lấy E sao cho AE= AB. Nối D với E
a) Chứng minh tam giác ABC= tam giác ADE
b) Gọi M là trung điểm của BC, N là trung điểm của DE. Chứng minh AM=AN
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác ABC, điểm M bất kì nằm trong tam giác.
a) So sánh MB + MC với BC.
b) Chứng minh 2(MA + MB + MC) > AB + BC + CA.
c) Gọi I là giao điểm của đường thẳng BM và cạnh AC. So sánh MC và MI + IC, từ đó chứng minh MB + MC < IB + IC
d) So sánh IB và IA + AB, từ đó chứng minh IB + IC < AB + AC
e) Chứng minh MB + MC < AB + AC
f) Chứng minh MA + MB + MC < AB + BC + AC
Cho tam giác MNP. Khi đó MN+NP>PM và MP-MN<PN . Hãy điền dấu > hay < thích hợp vào chỗ trống sau đây : MP+NP...MN ; MN-MP...PN.