Ta có: ΔMNP cân tại M(gt)
nên \(\widehat{M}=180^0-2\cdot\widehat{N}\)(Số đo của góc ở đỉnh trong ΔMNP cân tại M)
\(\Leftrightarrow\widehat{M}=180^0-2\cdot70^0\)
hay \(\widehat{M}=40^0\)
Vậy: \(\widehat{M}=40^0\)
Ta có: ΔMNP cân tại M(gt)
nên \(\widehat{M}=180^0-2\cdot\widehat{N}\)(Số đo của góc ở đỉnh trong ΔMNP cân tại M)
\(\Leftrightarrow\widehat{M}=180^0-2\cdot70^0\)
hay \(\widehat{M}=40^0\)
Vậy: \(\widehat{M}=40^0\)
cho tam giác MNP cân tại P có góc M = 70 độ . Tính góc P, N giúp mình với mai thi rồi
Cho tam giác MNP cân tại M. Kẻ MK ⊥NP tại K.a)Chứng minh rằng: MKN = MKPb)Giả sử MN= 5cm và NP = 6cm. Tính MK
Cho tam giác MNP vuông tại M,biết MN=9cm,NP=15cm
a)Tính MP
b) tia phân giác góc N cắt MP tại D.Trên cạnh NP lấy điểm E sao cho NE=NM
Chứng minh tam giác MND=tam giác END và tam giác MDE
bài 1;cho tam giác abc vuông tại b. tính độ dài ab biết ac=12cm,bc=8cm
bài 2; cho tam giác mnp vuông tại n tính độ dài mn biết mb=căn bậc 30,np=căn bâc 14
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
baif4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
baif5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
1. Cho tam giác ABC vuông tại A có AC=1cm, BC=2cm. Kẻ đường trung tuyến BK và đường cao AH
a) Tính AB
b) Tính BK và AH
2. Cho tam giác ABC vuông cân tại A (ˆBAC=90BAC^=90 độ, BD=BA). Ở phía ngoài tam giác ABC, dựng tam giác DAB vuông cân tại D (ˆDAB=90DAB^=90 độ, BD=BA). Gọi E là một điểm tùy ý trên DA. Đường thẳng đi qua E và vuông góc với BE cắt AC ở F
a) Gọi K là giao điểm của BD và AC. CMR tam giác KAB vuông cân tại A và DA là đường trung trực của đoạn KB
b) CMR tam giác KEA= tam giác BEA
c) CMR tam giác KEF cân tại E. Từ đó suy ra BE= EF
Cho tam giác ABC cân tại A. Kẻ AM vuông góc với BC (M thuộc BC)
a) Chứng minh tam giác ABM=tam giác ACM
b) Cho biết AB=AC=13cm, AM= 12cm. Tính độ dài cạnh BC
c) Đường thằng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở D. Chứng minh tam giác DBC cân
Bài 2: Cho tam giác ABC vuông cân tại A. Tính độ dài cạnh BC biết AB = AC = 2dm
A. BC = 4 dm B. BC = √6 dm C. BC = 8dm D. BC = √8 dm
Bài 3: Một tam giác vuông có cạnh huyền bằng 26cm và có độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông?
A. 10 cm, 22 cm B. 10 cm, 24 cm C. 12 cm, 24 cm D. 15 cm, 24 cm
Bài 4: Tam giác nào là tam giác vuông trong các tam giác có độ dài ba cạnh như sau:
A. 15 cm; 8 cm; 18 cm
B. 21 cm; 20 cm; 29 cm
C. 5 cm; 6 cm; 8 cm
D. 2 cm; 3 cm; 4 cm
Bài 5: Cho tam giác ABC vuông tại A. Kẻ AD ⊥ BC tại D. Biết AB = 7 cm, BD = 4 cm. Khi đó AD có độ dài là:
A. AD = 33 cm
B. AD = 3 cm
C. AD = √33 cm
D. AD = √3 cm
Cho tam giác ABC vuông cân tại A, M là trung điểm của cạnh BC,E là điểm nằm giữa M và C. Vẽ BH vuông góc với AE tại H, CK vuông góc với AE tại K. CMR: a. BH = AK
b. tam giác HBM = tam giác KAM
c. tam giác MHK vuông cân