Cho tam giác OAB. Gọi M và N lần lượt là trung điểm của OA và OB. Tìm các số m, n sao cho :
a) \(\overrightarrow{OM}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
b) \(\overrightarrow{AN}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
c) \(\overrightarrow{MN}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
d) \(\overrightarrow{MB}=m\overrightarrow{OA}+n\overrightarrow{OB}\)
Cho tam giác ABC nội tiếp đường tròn tâm O, M là trung điểm của BC, H là trực tâm của tam giác, G là trọng tâm tam giác. I là tâm đường tròn nội tiếp tam giác ABC. \(BC=a\); \(CA=b;AB=c\). Trong mệnh đề sau có bao nhiêu mệnh đề đúng:
a, \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=3\overrightarrow{OG}\)
b, \(\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{HM}\)
c, \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
d, \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
Cho tam giác ABC. Gọi M, N, P là những điểm được xác định như sau :
\(\overrightarrow{MB}=3\overrightarrow{MC};\overrightarrow{NC}=3\overrightarrow{NA};\overrightarrow{PA}=3\overrightarrow{PB}\)
a) Chứng minh \(2\overrightarrow{OM}=3\overrightarrow{OC}-\overrightarrow{OB}\) với mọi điểm O
b) Chứng minh hai tam giác ABC và MNP có cùng trọng tâm
1. Cho hình chữ nhật ABCD có O là giao điểm 2 đường chéo. M,N lần lượt thuộc cạnh AD, AB sao cho MA = 3MD, NB=3NA. Biết \(\overrightarrow{MN}\)= a. \(\overrightarrow{OA}\)+b.\(\overrightarrow{OB}\), tổng a+b bằng?
2. Cho A (0;1), B(2;3);C(2;5); D(-1;1). Chọn mệnh đề đúng:
A. B,A,D thẳng hàng
B. B,A,C thẳng hàng
C. B,C,D thẳng hàng
D. A,C,D thẳng hàng
3. Cho tam giác ABC và M thay đổi thoả mãn:
|\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)| = 3
Biết M thuộc đường tròn. Tính diện tích đường tròn đó?
A. 9\(\pi\) B. 4\(\pi\) C. \(\pi\) D. 3\(\pi\)
Nhờ mọi người giải thích cho em cách làm với ạ. Em cảm ơn.
Cho hình bình hành ABCD có hai đường chéo cắt nhau tại O. Hãy thực hiện các phép toán sau :
a) \(\overrightarrow{AO}+\overrightarrow{BO}+\overrightarrow{CO}+\overrightarrow{DO}\)
b) \(\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{AC}\)
c) \(\overrightarrow{OC}-\overrightarrow{OD}\)
Cho hình thoi ABCD tâm O có AC = 8; BD = 6. Chọn hệ tọa độ \(\left(O;\overrightarrow{i};\overrightarrow{j}\right)\) sao cho \(\overrightarrow{i}\) và \(\overrightarrow{OC}\) cùng hướng, \(\overrightarrow{j}\) và \(\overrightarrow{OB}\) cùng hướng.
a) Tìm tọa độ các đỉnh của hình thoi
b) Tìm tọa độ trung điểm I của BC và trọng tâm của tam giác ABC
c) Tìm tọa độ điểm đối xứng I' của I qua tâm O. Chứng minh A, I', D thẳng hàng
d) Tìm tọa độ của vectơ \(\overrightarrow{AC},\overrightarrow{BD},\overrightarrow{BC}\)
Cho tam giác ABC cố định
a) Xác định điểm I sao cho : \(\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)
b) Lấy điểm M di động. Vẽ điểm N sao cho : \(\overrightarrow{MN}=\overrightarrow{MA}+3\overrightarrow{MB}-2\overrightarrow{MC}\)
Chứng minh rằng MN luôn đi qua một điểm cố định
Cho tam giác ABC và một điểm M tùy ý. Chứng minh rằng vectơ \(\overrightarrow{v}=\overrightarrow{MA}+\overrightarrow{MB}-2\overrightarrow{MC}\) không phụ thuộc vào vị trí của điểm M. Hãy xác định điểm D sao cho \(\overrightarrow{CD}=\overrightarrow{v}\) ?
Cho hình thang ABCD (AB//CD). Gọi O là giao điểm của hai cạnh bên AD và BC. Gọi I, J lần lượt là trung điểm của AB, CD
a) Tính \(\overrightarrow{OI}\) theo \(\overrightarrow{OA}\) và \(\overrightarrow{OB}\)
b) Đặt \(k=\dfrac{OD}{OA}\). Tính \(\overrightarrow{OJ}\) theo \(k\), \(\overrightarrow{OA}\) và \(\overrightarrow{OB}\). Suy ra O, I, J thẳng hàng