Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm.
a) Tính đường cao AH.
b) Kẻ HE⊥AB, HF⊥AC (E∈AB, F∈AC). Tính EF.
c) Gọi M,N lần lượt là trung điểm của HB và HC. Tứ giác MNFE là hình gì? Vì sao? Tính diện tích tứ giác đó.
Cho tứ giác ABCD có diện tích S. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA
a, Tứ giác EFGH là hình gì? Vì sao?
b, Tính diện tích tứ giác EFGH theo S
Cho tam giác ABC vuông tại A có AB=3cm;AC=4cm . Gọi I là trung điểm của BC. Qua M lần lượt kẻ các đường thẳng vuông với AB và AC tại K và H
a) Chứng minh tứ giác AKIH là hình chữ nhật;
b) Lấy điểm D đối xứng vs điểm I qua điểm K. Chứng Minh tứ giác IBDA là hình thoi
Cho tam giác ABC cân tại A, đường trúng tuyến AM. Gọi I là trung điểm của AC. K là điểm đối xứng với M qua I. a) CM: tứ giác AMCK là hình chữ nhật b) CM: AB=MK c) Tìm điều kiện của tam giác ABC để tứ giác AMCK là hình vuông. d) Cho AB=AC=5cm; BC=6cm. Tính diện tích tam giác ABC.
Cho tam giác ABC vuông tại A , canh AB=8cm cạnh BC =17cm. Trên BC lấy một điểm M. Vẽ hình bình hành ABMN . Tính diện tích của tứ giác ANCM
cho tam giác ABC và điểm O. gọi D,E,F lần lượt là các điểm đối xứng với A,B,C qua O. biết AB=10, AC=12 và chu vi của DEF là 37. Độ dài cạch BC?
cho tam giác ABC góc A = 90 độ,đường cao AH (H thuộc BC) Vẽ HE vuông với AB(E thuộc AB) vẽ HF vuông góc AC ( F thuộc AC) CM a) Tứ giác AEHF là hình chữ nhật . Từ đó suy ra AH=EF b) Tam Giác AEF tam giác ACB c)AE^2 = AF *FC d) Cho AB=15cm,AC=20cm Tính diện tích AEF e) Gọi AD là phân giác góc A Tính CD,BD và diện tích AHD
Cho tam giác abc cân tại a,đường cao ah,i là trung điểm của ab.Gọi D là điểm đối xứng vs h qua i
a)cmr adbh là hcn
b)adhc là hình gì
c)gọi e là trung điểm ac .CMr a và h đối xứng vs nhau qua ie
d) gọi f là giao điểm của dc và he.CMR AB=6EF
giúp mk gấp vs mai thi rồi
mk chỉ xin câu d thôi
Cho hình chữ nhật ABCD. M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ là hình thoi.
b) Các đường thẳng AC, BD, MP, NQ gặp nhau tại một điểm
c) Tính tỉ số diện tích các tứ giác MNPQ và ABCD