Gọi M là trung điểm AB \(\Rightarrow CM=\frac{2a\sqrt{3}}{2}=a\sqrt{3}\) (t/c trung tuyến tam giác đều)
\(\Rightarrow GC=\frac{2}{3}CM=\frac{2a\sqrt{3}}{3}\)
Do trong tam giác đều, trọng tâm đồng thời là trực tâm
\(\Rightarrow AB\perp GC\Rightarrow\overrightarrow{AB}.\overrightarrow{GC}=0\)
Đặt \(x=\left|\overrightarrow{AB}+\overrightarrow{GC}\right|\Rightarrow x^2=AB^2+GC^2+2\overrightarrow{AB}.\overrightarrow{GC}\)
\(\Rightarrow x^2=AB^2+GC^2=4a^2+\frac{4a^2}{3}=\frac{16a^2}{3}\)
\(\Rightarrow x=\frac{4a\sqrt{3}}{3}\)