Trong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại D trên cạnh BC.
Góc BAC có số đo bằng o.
Cho tam giác ABC vuông tại A, AB<AC. Tia phân giác của góc ABC cắt cạnh AC tại D. Kẻ DE vuông góc với BC
a) Chứng minh AB=BE.
b) Chứng minh BD là đường trung trực của AE.
c) Tia ED vắt tia BA tại điểm K. Chứng minh °DKC cân và DA<DC.
d) Chứng minh BD vuông góc với CK .
Trong tam giác ABC, hai đường trung trực của hai cạnh AB và AC cắt nhau tại điểm D nằm trên cạnh BC. Chứng minh rằng :
a) D là trung điểm của cạnh BC
b) \(\widehat{A}=\widehat{B}+\widehat{C}\)
Cho tam giác ABC cân tại A có d là đường trung trực AB vẽ phân giác AE của góc BAC ( E thuộc BC ) d cắt AE tại O a, AE là đường trung trực của tam giác ABC b, O thuộc đường trung trực của đoạn thẳng AC c, O cách đều 3 đỉnh của tam giác ABC
Cho tam giác ABC (AB<AC). Trên AC xác định điểm M sao cho AM=AB. Vẽ đường trung trực của BC và MC cắt nhau tại O. CMR: OA là đường trung trực của BM.
Chứng minh rằng nếu trong tam giác ABC có hai cạnh AB và AC không bằng nhau thì đường trung tuyến xuất phát từ đỉnh A không vuông góc với BC ?
Cho tam giác ABC không vuông. Các đường trung trực của AB và AC cắt nhau tại O. Cắt đường thẳng BC theo thứ tự tại E và F. CMR:
a, OB=OC
b, Tam giác AOE = tam giác BOE và tam giác AOF = tam giác COF
Cho tam giác ABC cân ở A. Đường trung trực của các cạnh AB và BC cắt nhau tại M. Trên cạnh
AB, AC lấy các điểm D, E sao cho AD = CE. Chứng minh rằng MD = ME.
Cho hai tam giác cân chung đáy ABC và ABD, trong đó ABC là tam giác đều. Gọi E là trung điểm của AB. Khi đó, khẳng định nào sau đây sai ?
(A) Đường thẳng CD là đường trung trực của AB
(B) Điểm E không nằm trên đường thẳng CD
(C) Đường trung trực của AC đi qua B
(D) Đường trung trực của BC đi qua A