Cho tam giác ABC vuông tại A ( có AB <AC ), đường cao AH . Trên tia AC lấy điểm D sao cho AD =AB . Trên tia HC lấy điểm E sao cho HE =AH a. Chứng minh: Bốn điểm A D E B thuộc cùng một đường tròn
Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với \(\widehat{A}=60^o.\) Gọi H là giao điểm của các đường cao BB' và CC'. Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn.
Cho tam giác ABC vuông ở A có cạnh BC cố định , Gọi I là giao điểm của ba đường phân giác trong . Chứng minh 2 điểm nằm trên cung tròn chứa góc 155 độ dựng trên đoạn thẳng BC ?
Dựng tam giác ABC, biết BC = 6 cm, \(\widehat{A}=40^o\) và đường cao AH = 4 cm.
Cho tam giác ABC có cạnh BC cố định và \(\widehat{A}=\alpha\) không đổi. Tìm quỹ tích giao điểm của ba đường phân giác trong của tam giác đó ?
Cho đường tròn tâm O bán kính R và điểm A (khác O) ở trong đường tròn đó. Một đường thẳng d thay đổi, luôn đi qua A, cắt đường tròn đã cho tại hai điểm B và C. Tìm quỹ tích trung điểm I của đoạn thẳng BC ?
Giải giúp mình với.Cho nửa đường tròn đường kính AB cố định và tiếp tuyến Ax tại A với đường tròn. Một điểm M di động trên nửa đường tròn cùng bên với tiếp tuyến Ax, tia BM gặp tia phân giác của góc Ax tại I. Tìm tập hợp điểm I khi M di động trên nửa đường tròn.
Cho tam giác ABC vuông tại A. Nửa đường tròn đường kính AB cắt cạnh BC tại điểm D (khác B). Lấy điểm E bất kì trên cung nhỏ AD (E không trùng với A và D). BE cắt cạnh AC tại điểm F. Chứng minh rằng CDEF là tứ giác nội tiếp.
Bài 4: Cho nửa đường tròn (O; R) đường kính AB, kẻ hai tiếp tuyến Ax, By. Từ M thuộc nửa đường tròn kẻ tiếp tuyển thứ ba cắt Ax, By lần lượt tại C và D. a/ Tính số đo góc COD b/C/m: AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn. c/Gọi N là giao điểm của BC và AD. C/m: MN // AC.