xet \(\Delta BHI\) va \(\Delta BAE\) co
\(\widehat{BAE}=\widehat{BHI}=90^0\)va \(\widehat{ABE}=\widehat{IBH}\) (BE la pg)
\(\Rightarrow\Delta BHI\simeq\Delta BAE\left(gg\right)\)
\(\Rightarrow\dfrac{BH}{AB}=\dfrac{IH}{AE}\)
D,Ta co: \(\widehat{AIE}=\widehat{BIH}\left(dd\right)\)
ma \(\widehat{BIH}=\widehat{BEA}\left(\Delta BHI\simeq\Delta BAE\right)\)
\(\Rightarrow\widehat{AIE}=\widehat{BEA}\Rightarrow\Delta AIE\) can tai A
\(\Rightarrow AI=AE\)
A,\(\Rightarrow\dfrac{BH}{AB}=\dfrac{IH}{IA}\Rightarrow BH.IA=AB.IH\)
B, xet \(\Delta BHA\) va \(\Delta BAC\) co
\(\widehat{B}\) chung, \(\widehat{BAE}=\widehat{BHA}=90^0\)
\(\Rightarrow\Delta BHA\simeq\Delta BAC\left(gg\right)\)
C, Vi \(\Delta BHI\simeq\Delta BAE\)
\(\Rightarrow\dfrac{IH}{AE}=\dfrac{BH}{AB}\left(1\right)\)
Vi \(\Delta BHA\simeq\Delta BAC\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{BH}{BA}\left(2\right)\)
Tu (1) va (2)\(\Rightarrow\dfrac{HI}{AE}=\dfrac{AH}{AC}\Rightarrow\dfrac{HI}{AH}=\dfrac{AE}{AC}\)
\(\Rightarrow\dfrac{HI}{AH-HI}=\dfrac{AE}{AC-AE}\Rightarrow\dfrac{IH}{IA}=\dfrac{AE}{EC}\)
cai nay \(\simeq\) la dong dang do nha bn