Vì tỉ số hai hình chiếu của AB và AC trên cạnh huyền bằng 9/16 nên \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{16}=25\)
\(\Leftrightarrow AC^2=16\)
\(\Leftrightarrow AC=4\left(cm\right)\)
\(\Leftrightarrow AB=3\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{4\cdot3}{2}=6\left(cm^2\right)\)