Lời giải:
a) Vì $BA=BD$ nên tam giác $BAD$ cân tại $B$
Do đó:
$\widehat{HAD}=\widehat{BAD}-\widehat{BAH}=\widehat{BDA}-(90^0-\widehat{ABH})=\widehat{BDA}-\widehat{C}=\widehat{DAC}$
$\Rightarrow AD$ là tia phân giác $\widehat{HAC}$
b) Xét tam giác vuông $AHD$ và $AKD$ có:
$\widehat{HAD}=\widehat{KAD}$ (theo phần a)
$AD$ chung
$\Rightarrow \triangle AHD=\triangle AKD$ (ch-gn)
$\Rightarrow AH=AK$ (đpcm)