a) Xét hai tam giác vuông \(ABC\) và \(KBH\) có:
\(\widehat{B}\) : góc chung
BK = BC (gt)
Vậy: \(\Delta ABC=\Delta BKH\left(ch-gn\right)\)
Suy ra: KH = AC (hai cạnh tương ứng)
b) Xét hai tam giác vuông ABE và HBE có:
BA = BH (vì \(\Delta ABC=\Delta KBH\))
BE: cạnh chung
Vậy: \(\Delta ABE=\Delta HBE\) (ch - cgv)
c) Vì \(\Delta ABE=\Delta HBE\) (cmt)
Suy ra: AE = HE (hai cạnh tương ứng)
Vì \(\Delta EHC\) vuông tại H
Suy ra \(\widehat{HCE< \widehat{H}}\) (vì \(\widehat{H}\) = 90o) nên HE < EC
Mà AE = HE (cmt)
Do đó: AE < EC (đpcm)